

Stormwater Management Plan

Deer Run Subarea B

City of Dublin, Ohio

OHM Advisors 580 NORTH FOURTH STREET, SUITE 610 COLUMBUS, OH 43215

T 614.418.0600 F 614.418.0614

OHM-Advisors.com

Stormwater Management Plan

Deer Run Subarea B

City of Dublin, Ohio

Prepared By:

OHM Advisors 580 North Fourth Street, Suite 610 Columbus, Ohio 43215

I hereby certify that the calculation contained herein are accurate to the best of my knowledge and belief.

Table of Contents

I.	Project Summary
11.	Introduction4
III.	Hydrologic Analysis Method4
IV.	Pre Developed Conditions4
V.	Post Developed Conditions6
VI.	Outlet Design7
VII.	Maintenance and Inspection7
VIII.	Post Construction Water Quality8
TABLES	5
Table	1 - Pre Developed Subarea Conditions5
Table	2 – Allowable Release Rates6
Table	3 - Post Developed Subarea Conditions7
APPEN	DICES
Appen	dix A – Storm Sewer Calculation Sheets5
Appen	dix B – Post-Construction Water Quality Calculations5
Appen	dix C – Hydraflow Reports5
Appen	dix D – Time of Concentration Calculations5
Appen	dix E - Exhibits5

EXHIBITS

nibit 2 – Subarea B5

I. Project Summary

Project Name: <u>Deer Run Subarea B</u> Location: <u>Dublin, Ohio</u> Type: <u>Stormwater Management Plan</u> Reviewing Agency: <u>City of Dublin</u>

Hydrological Analysis Method:

This report uses the unit hydrograph method described in the National Engineering Handbook (NEH) using the Natural Resources Conservation Service (NRCS) Type II 24-hr design storm. Requirements for the post construction quantity/quality control are per the City of Dublin Stormwater Management Design Manual, June 2013. Post construction quality control shall be designed according to the Ohio EPA General Permit Authorization for Storm Water Discharges Associated with Construction Activity Under the National Pollutant Discharge Elimination System (NPDES). HydroCAD Version 10.00 was the design software used for the analysis.

Rainfall data used (per the City of Dublin Stormwater Management Design Manual):

Rainfall Depths							
1-yr	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
2.20 in.	2.63 in.	3.24 in.	3.74 in.	4.44 in.	5.02 in.	5.63 in.	

Proposed Design Overview:

Water Quantity: Not Applicable per the City of Dublin Stormwater Management Design Manual, Chapter 2, Section 2.A.1.a

Water Quality: Bioretention Swale

Receiving Body of Water: Subarea B – Deer Run

II. Introduction

The design and analysis described within the contents of this Stormwater Management Report is for the construction project of Deer Run Road Subarea B in which private road is being constructed to provide access to proposed estate lots located in this area. The overall project construction consists of one subarea, Subarea B. The overall development areas for Subarea B is 16.1 acres that will allow for the development of 5 total estate lots. The Deer Run Subarea B project development consists of the construction of the roadway to provide access to these proposed estate lots, still yet to be designed and developed. In Subarea B, the roadway construction consists of 2.17 acres of the overall 16.1 acres (4.07 acres is still available for proposed estate lots development). The project is located off of Dublin Rd on the existing Deer Run Rd. with Subarea A located north of Deer Run and Subarea B located south of Deer Run. The intent of the project is to develop the existing wooded areas into several proposed estate lots for residential use.

The runoff from the roadway will be collected in a Bioretention swale to address quality requirements. In Subarea B, the runoff is collected in a bioretention swale and outlets to Deer Run.

III. Hydrologic Analysis Method

The design and analysis of the stormwater plan were completed using the unit hydrograph method described in the National Engineering Handbook (NEH) using the Natural Resources Conservation Service (NRCS) Type II 24-hr design storm. From the NRCS tables provided, the runoff curve number was determined as well as the method of calculating the time of concentration. From this, the 1, 2, 5, 10, 25, 50, and 100-year storm discharges were calculated using the Hydraflow Hydrographs program.

IV. Pre Developed Conditions

The overall pre-developed condition for Subarea B consists of 16.1 acres to be rezoned. This land consists of wooded area with moderate ground cover in Type "D" Soils (Glynwood Clay Loam and End Moraine) which corresponds to the runoff Curve Number 83. The time of concentration for the pre-developed area is 5.08 minutes. Calculations for the time of concentration can be found in Appendix D. The information for the pre developed site conditions are shown in Table 1.

Table 1: Pre Developed Subarea Characteristics

	Area (acres)	Land Usage	Impervious Area (%)	Weighted CN	Time of Concentration (minutes)
Subarea B	2.17	Wooded, Impervious	0.02%	83	5.08

In Subarea B, the pre developed area for the roadway is located in Sub-basins 10 and 20 of the Deer Run Watershed per the City of Dublin Stormwater Master Plan. It should be noted that portions of 3 of the proposed estate lots are located outside of this watershed in the unstudied areas and shall comply with the release rates specified in Chapter 2, Section C.1.b. This shall be considered when the separate construction plans and stormwater management plans are submitted for these development lots. The approximate acreage of the proposed roadway development between the two sub-basins are listed in Table 2, as well as the respective allowable release rates.

Table 2: Allowable Release Rates

Deer Run Watershed Release Rate Requirements (from the City of Dublin Stormwater Master Plan)							
		Design Storm (CFS/ac.)					
Sub-Basin	1-year	2-year	5-year	10-year	25-year	50-year	100-year
10	0.10	0.10	0.10	0.30	0.80	1.80	2.80
20	0.10 0.10 0.10 0.40 1.60 3.10 4.40						
Unstudied	< 2.0 acres, 0.20						

Allowable Release Rates per Acre								
			Design Storm (CFS/ac.)					
Sub-Basin	Area	1-year	2-year	5-year	10-year	25-year	50-	100-year
	(ac.)						year	
Subarea A								
10	0.10	0.01	0.01	0.01	0.03	0.08	0.18	0.28
Unstudied	0.59	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Subarea B								
10	0.66	0.07	0.07	0.07	0.20	0.53	1.19	1.85
20	0.47	0.05	0.05	0.05	0.19	0.75	1.46	2.07

V. Post Developed Conditions

The proposed roadway construction area is shown in Exhibit 2. For subarea B, this includes a total of 2.17-acre development of which 0.48 acres is comprised of the roadway with a gravel top course and the remaining development is the proposed grading including the bioretention swales on both sides of the roadway. Composite runoff numbers were calculated in Hydraflow and are summarized in Table 3.

Exhibits 2 shows the design of the proposed roadway in Subarea B that will provide access to the future estate lots. The remaining estate lots will be designed and will provide separate construction design plans and stormwater management plans. This project will utilize a Bioretention Swale that runs parallel to the roadway and will provide quality treatment for the project.

Table 3: Post Developed Subarea Characteristics

	Area	Land Usage	Impervious	Weighted	Time of
	(acres)		Area (%)	CN	Concentration
					(minutes)
Subarea B	2.17	Impervious	39%	84	*Refer to the Time of
		Area, Wooded			Concentration Calcs
		Area, Grass			in Appendix D for the
		Cover			respective drainage
					areas.

VI. Outlet Design

For Subarea B, there are three outlets for the system. Two outlets are graded to discharge to Deer Run and the last outlet is collected into a proposed storm system and discharge to a proposed swale to grade to Deer Run. All outlets are provided to minimize disturbance of the existing ground.

VII. Maintenance and Inspection

The city shall be responsible for the inspection and maintenance of the bioretention swales located alongside the proposed roadway. Inspections and maintenance that are conducted shall be documented by the city. For initial sediment control, please refer to the City of Dublin,

Stormwater Management Design Manual, Chapter 8 and the Sediment and Erosion control submitted with the proposed construction plans. The following procedures should be followed for the bioretention swales. Inspection of the storm structures to remove debris or sediment that has accumulated at the catch basins or outlet shall occur once a year. Maintenance (mowing or removal of excess sediment or debris) of the bioretention swales shall occur at a minimum on a monthly basis or more frequently if needed. More frequent maintenance may need required during the months of April through September, or during heavy rainfalls where runoff might carry debris into the swale and where grass might grow at a much higher rate. Adjustments may be made to this plan upon review of the 1st year inspection results.

VIII. Post Construction Water Quality

The project is a new construction project so water quality treatment is required for a 0.75-inch event. Water Quantity treatment is not required since the project location is located within the River Corridor as per the City of Dublin Stormwater Management Design Manual, Chapter 2, Section 2.A.1.a. For Subarea B it was 0.02% pre development and is 22% post development. By utilizing Vegetated Bioretention Swale alongside the roadway this will allow the proposed soil media to improve the water quality and will also reduce runoff rates, even though quantity treatment is not required. The 12"soil layer under the finished grade of the ditch bottom, provides enhanced infiltration and pollutant removal. Therefore, we are able to treat the required 0.75-inch event for the project. Calculations that show the required volume storage to treat this rainfall event and the storage provided for each bioretention swale are shown in the calculations for the water quality conditions can be found in Appendix B.

Appendix A

Storm Sewer Calculation Sheets

Storm Sewer Calculations

Project NumberDeer Run Date: 11,09/2015 Calculated By<u>ACF</u>

⊲
F
⊲
ш
Ľ
F
c
Ľ
⊢
S,

Project Name: Deer Run

10 10 10 10 10 10	DEPTH OF HYDRAULIC GRADE FT.	8 0
SRADE (year) = - AT OUTLET = : ELEVATION =	HYDRAULIC GRADE UPHILL ELEV. FT.	
HYDRAULIC GRADE (year) = PERCENT FULL AT OUTLET = TALWATER ELEVATION =	HYDRAULIC GRADE DOWNHILL ELEV. FT.	8
Ľ.	MINOR HEAD LOSS Hm FT.	00000
	HEAD LOSS COEFF. K	
SNOI	HYDRAULIC GRADE SLOPE FT./ FT.	0.0042
HYDRAULIC GRADE CALCULATIONS	HYDRAULIIC HYDRAULIC DISCHARGE GRADE SLOPE Q C.F.S. FT./ FT.	4 83
JLIC GRADE	HYDRAULIC RAINFALL INTENSITY IN./HR.	8 6
HYDRAU	NIN MUR SUM	000
25 0.012	FULL %	74.65
M (year) = CIENT n =	MEAN CAPACITY PERCENT VELOCITY FLOWING FULL FULL F.P.S. C.F.S. %	80 10
DESIGN STORM (year) = ROUGHNESS COEFFICIENT n =	MEAN C ELOCITY F F.P.S.	8
OUGHNE	SIZE OF INE	μ.
Ľ	SLOPE OF PIPE FT. / FT.	0.0075
	E LENGTH OF PIPE FT.	42.00
	DISCHARGI Q C.F.S.	4 8
	RANVFALL DISCHARGE LENGTH INTENSITY OF PIPE IN / HR. Q.F.S. FT.	88
	TIME SUM MIN.	10.00
	⊢Ÿ₩	ę
	REA SUM CA CA ACRES ACRES	
	AREA CA ACRES	0 0 640
PIPE CALCULATIONS	DRAINAGE AREA M C (ES AC	
CALCUL	DRA SUM A A ACRES ACRES	
PIPE 0	A ACRES	
	DEPTH OF STRUC. FT.	8 e
	INVERT OUT ELEV. FT.	80 24 24 24 24 24 24 24 24 24 24 24 24 24
	INVERT IN ELEV. FT.	
	TOP INVERT OF IN CASTING ELEV. FT. FT.	83724
E DATA	STRUC. TYPE	
STRUCTURE DATA	STRUC. NO.	8

Appendix B

Post- Construction Water Quality Calculations

Deer Run Project - Dublin, OH

Functional Classification : Local Road Subarea B RT DITCH #1

Stormwater Management Requirements

Location of Project:	River Corridor
Quantity Requirements:	Not applicable
Quality Requirements:	0.75 inch event
Type of Drainage System:	Open Channel

Hydrologic Soil Group: D

Ditches shall be designed to carry the 10 year, 24 hr storm.

Open Channels shall be designed with one foot of freeboard above the design water surface elevation for the 10 year, 24-hour storm.

The 100 yr, 24 hour storm shall not encroach into proposed or existing residential dwellings or places of business.

Method of treating water	
quality for the project:	Bioretention Swale

Pre Construction Imprevious	0 acres
Area	0 40165
Post Construction	0.11 acres
Impervious Area	0.11 acres
Total Area	0.47 acres
% of impervious area	23.40%

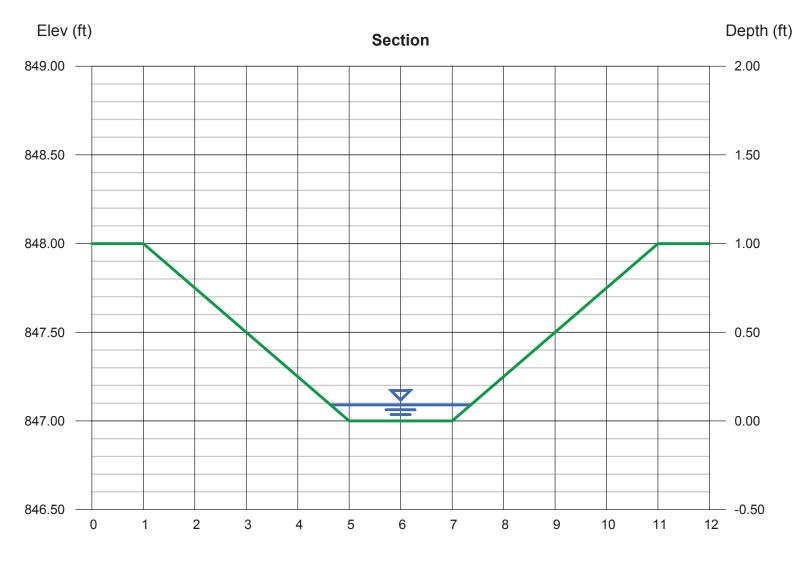
Time of Concentration

tc = 0.12 hr

Water Quality Volume (WQv)

$WQ_V = C * \left(\frac{P}{12}\right)$	* A		Where, $C = 0.858i^3 - 0.78i^2 + 0.774i + 0.04$ $i = fraction of post - const. impervious surface$
l = P =	0.189423 0.2340 0.75 0.6811	inches	P = 0.75 Precipitation Depth A = Area tributary to basin, acres
$WQ_V =$	0.008064	ac-ft	351.2464 CU FT

 $WQ_V = 0.008064 \text{ ac-ft}$ WQ_V Elevation = 0.09 ft water depth in swale Available Depth in Ditch: 1.00 FT Available Storage in Ditch: 1,290 CU FT


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jul 8 2016

B-RT1

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.09
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 0.535
Total Depth (ft)	= 1.00	Area (sqft)	= 0.21
Invert Elev (ft)	= 847.00	Velocity (ft/s)	= 2.52
Slope (%)	= 9.25	Wetted Perim (ft)	= 2.74
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.12
		Top Width (ft)	= 2.72
Calculations		EGL (ft)	= 0.19
Compute by:	Known Q		
Known Q (cfs)	= 0.54		

Reach (ft)

Deer Run Project - Dublin, OH Functional Classification : Local Road Subarea B LT DITCH #1

Stormwater Management Requirements

Location of Project:	River Corridor
Quantity Requirements:	Not applicable
Quality Requirements:	0.75 inch event
Type of Drainage System:	Open Channel
Hydrologic Soil Group:	D

Ditches shall be designed to carry the 10 year, 24 hr storm.

Open Channels shall be designed with one foot of freeboard above the design water surface elevation for the 10 year, 24-hour storm.

The 100 yr, 24 hour storm shall not encroach into proposed or existing residential dwellings or places of business.

Method of treating water quality for the project:

Bioretention Swale

Pre Construction Imprevious	0.028 acres
Area	0.020 00103
Post Construction	0.13 acres
Impervious Area	0.15 acres
Total Area	0.61 acres
% of impervious area	21.31%

Time of Concentration

tc = 0.17 hr

Water Quality Volume (WQv)

$$WQ_{V} = C * {\binom{P}{12}} * A$$

$$C = 0.858$$

$$i = fracti$$

$$P = 0.75$$

$$I = 0.2131$$

$$P = 0.75$$

$$A = Area$$

$$WQ_{V} = 0.001705 \text{ ac-ft}$$

$$WQ_{V} = 0.001705 \text{ ac-ft}$$

$$WQ_{V} = 0.12 \text{ ft water depth in swale}$$

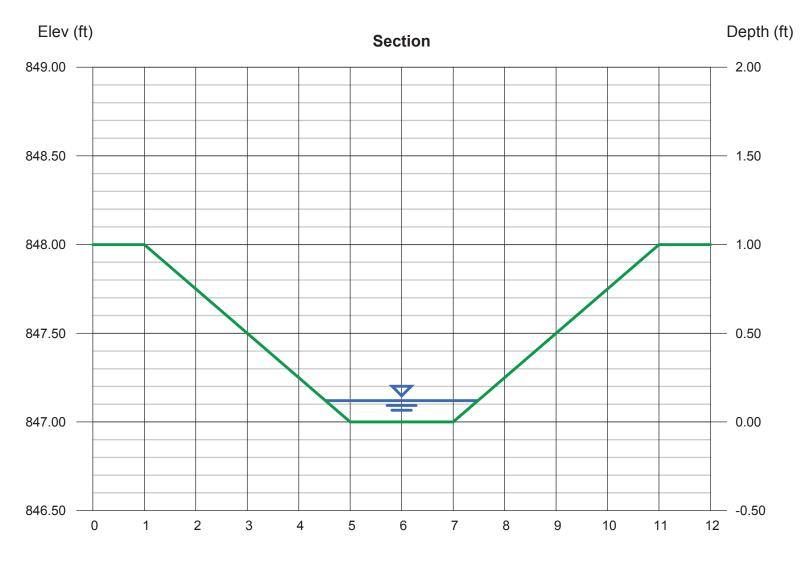
Available Depth in Ditch: 1.00 FT

Available Storage in Ditch: 5(1,500 CF

Where,

 $C = 0.858i^3 - 0.78i^2 + 0.774i + 0.04$ f = fraction of post - const. impervious surface P = 0.75Precipitation DepthA = Area tributary to basin, acres

74.26726 CU FT


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jul 8 2016

B-LT1

	Highlighted	
= 2.00	Depth (ft)	= 0.12
= 4.00, 4.00	Q (cfs)	= 0.660
= 1.00	Area (sqft)	= 0.30
= 847.00	Velocity (ft/s)	= 2.22
= 4.50	Wetted Perim (ft)	= 2.99
= 0.030	Crit Depth, Yc (ft)	= 0.14
	Top Width (ft)	= 2.96
	EGL (ft)	= 0.20
Known Q		
= 0.66		
	= 4.00, 4.00 = 1.00 = 847.00 = 4.50 = 0.030 Known Q	= 2.00 Depth (ft) = 4.00, 4.00 Q (cfs) = 1.00 Area (sqft) = 847.00 Velocity (ft/s) = 4.50 Wetted Perim (ft) = 0.030 Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Known Q Known Q

Reach (ft)

Deer Run Project - Dublin, OH Functional Classification : Local Road Subarea B LT DITCH #2

Stormwater Management Requirements

Location of Project:	River Corridor
Quantity Requirements:	Not applicable
Quality Requirements:	0.75 inch event
Type of Drainage System:	Open Channel

Hydrologic Soil Group: D

Ditches shall be designed to carry the 10 year, 24 hr storm.

Open Channels shall be designed with one foot of freeboard above the design water surface elevation for the 10 year, 24-hour storm.

The 100 yr, 24 hour storm shall not encroach into proposed or existing residential dwellings or places of business.

Method of treating water	
quality for the project:	Bioretention Swale

Pre Construction Imprevious Area	0 acres
Post Construction Impervious Area	0.098 acres
Total Area	0.39 acres
% of impervious area	25.13%

Time of Concentration

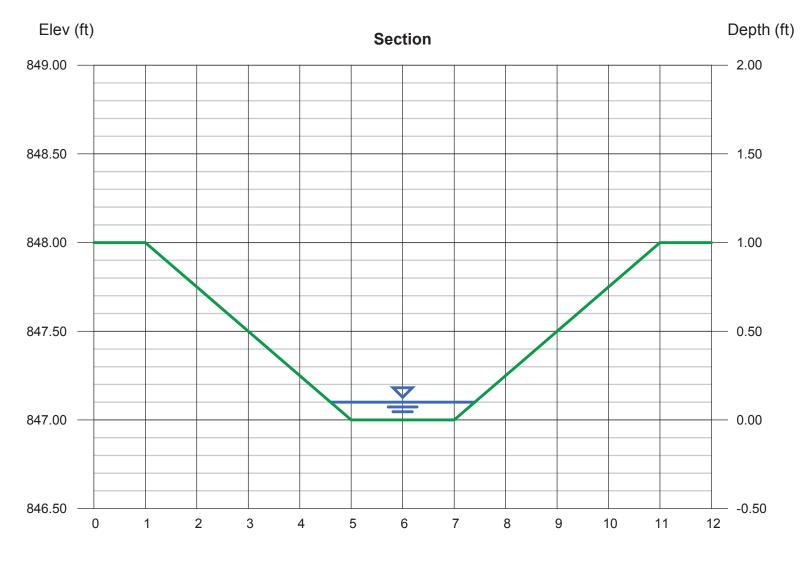
tc = 0.33 hr

Water Quality Volume (WQv)

$WQ_V = C * \left(\frac{P}{12}\right) * A$	Where, $C = 0.858i^3 - 0.78i^2 + 0.774i + 0.04$ i = fraction of post - const. impervious surface
C = 0.1989 I = 0.2513 P = 0.75 inches A = 0.3471 acre	P = 0.75Precipitation Depth A = Area tributary to basin, acres

187.91 CU FT

 $WQ_V = 0.0043$ ac-ft WQ_V Elevation = 0.10 ft water depth in swale Available Depth in Ditch: 1.00 FT Available Storage in Ditch: 5(1,680 CF


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jul 8 2016

B-LT2

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.10
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 0.395
Total Depth (ft)	= 1.00	Area (sqft)	= 0.24
Invert Elev (ft)	= 847.00	Velocity (ft/s)	= 1.65
Slope (%)	= 3.00	Wetted Perim (ft)	= 2.82
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.10
		Top Width (ft)	= 2.80
Calculations		EGL (ft)	= 0.14
Compute by:	Known Q		
Known Q (cfs)	= 0.40		

Reach (ft)

Deer Run Project - Dublin, OH Functional Classification : Local Road Subarea B LT DITCH #3

Stormwater Management Requirements

Location of Project:	River Corridor
Quantity Requirements:	Not applicable
Quality Requirements:	0.75 inch event
Type of Drainage System:	Open Channel

Hydrologic Soil Group: D

Ditches shall be designed to carry the 10 year, 24 hr storm.

Open Channels shall be designed with one foot of freeboard above the design water surface elevation for the 10 year, 24-hour storm.

The 100 yr, 24 hour storm shall not encroach into proposed or existing residential dwellings or places of business.

Method of treating water	
quality for the project:	Bioretention Swale

Pre Construction Imprevious Area	0 acres
Post Construction Impervious Area	0.15 acres
Total Area % of impervious area	0.71 acres 21.13%

Time of Concentration

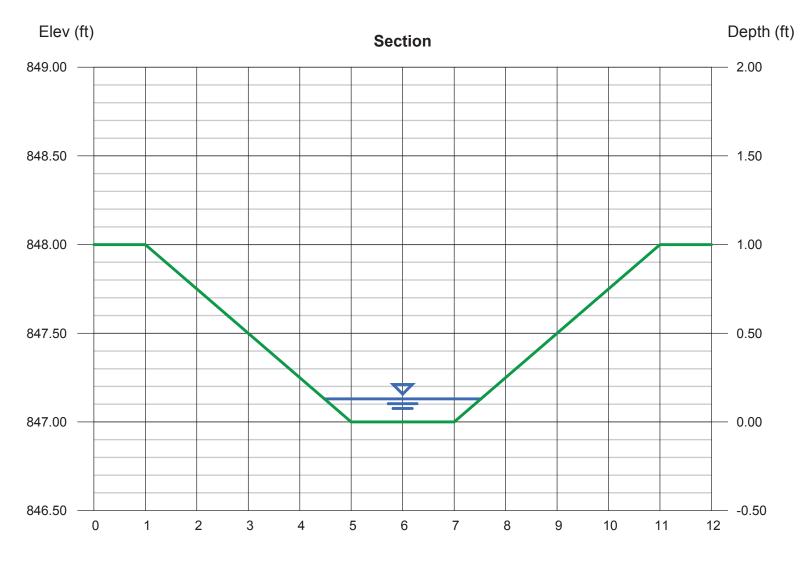
tc = 0.33 hr

Water Quality Volume (WQv)

$WQ_V = C * \left(\frac{P}{12}\right) * A$	Where, $C = 0.858i^3 - 0.78i^2 + 0.774i + 0.04$ i = fraction of post - const. impervious surface
C = 0.1768 I = 0.2113 P = 0.75 inches A = 0.3471 acre	P = 0.75Precipitation Depth A = Area tributary to basin, acres

167.07 CU FT

 $WQ_V = 0.0038$ ac-ft WQ_V Elevation = 0.13 ft water depth in swale Available Depth in Ditch: 1.00 FT Available Storage in Ditch: 5(1,655 CF


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Jul 8 2016

B-LT3

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.13
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 0.809
Total Depth (ft)	= 1.00	Area (sqft)	= 0.33
Invert Elev (ft)	= 847.00	Velocity (ft/s)	= 2.47
Slope (%)	= 5.75	Wetted Perim (ft)	= 3.07
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.16
		Top Width (ft)	= 3.04
Calculations		EGL (ft)	= 0.22
Compute by:	Known Q		
Known Q (cfs)	= 0.81		

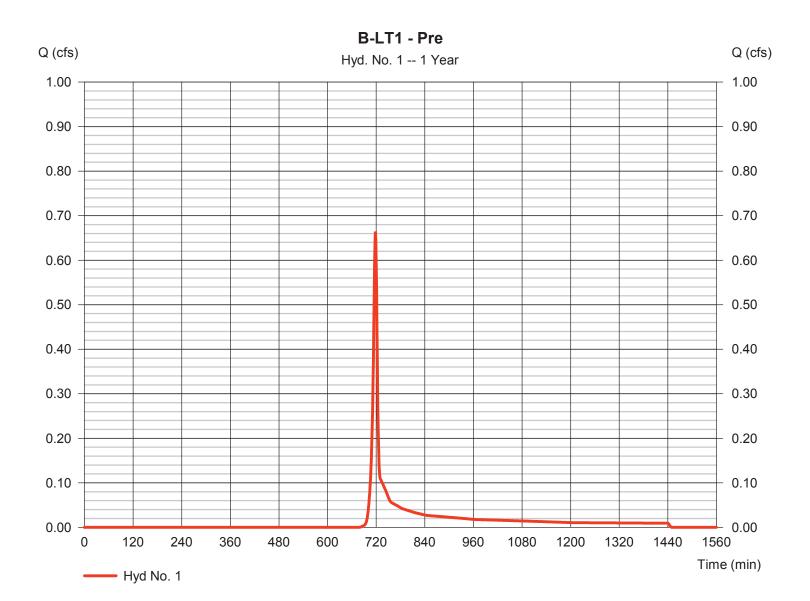
Reach (ft)

Appendix C

Hydraflow Reports

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.664	1	718	1,371				B-LT1 - Pre
2	SCS Runoff	0.660	1	720	1,524				B-LT1 - Post
3	SCS Runoff	0.392	1	718	817				B-LT2 - Pre
4	SCS Runoff	0.395	1	722	1,024				B-LT2 - Post
5	SCS Runoff	0.713	1	718	1,487				B-LT3 - Pre
6	SCS Runoff	0.809	1	719	1,729				B-LT3 - Post
7	SCS Runoff	0.472	1	718	985				B-RT1 - Pre
8	SCS Runoff	0.535	1	719	1,145				B-RT1 - Post
Sub	oarea B - Dra	inage Ca	lcs.gpw		Return	Period: 1 Ye	ear	Friday, 07	/ 8 / 2016

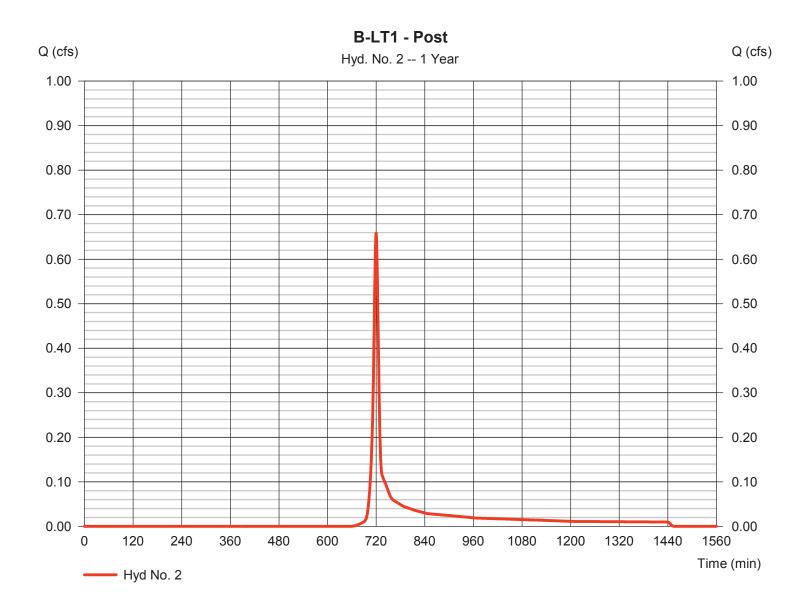

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

B-LT1 - Pre

Hydrograph type	= SCS Runoff	Peak discharge	= 0.664 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 1,371 cuft
Drainage area	= 0.610 ac	Curve number	= 78*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.32 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.028 x 91) + (0.582 x 77)] / 0.610

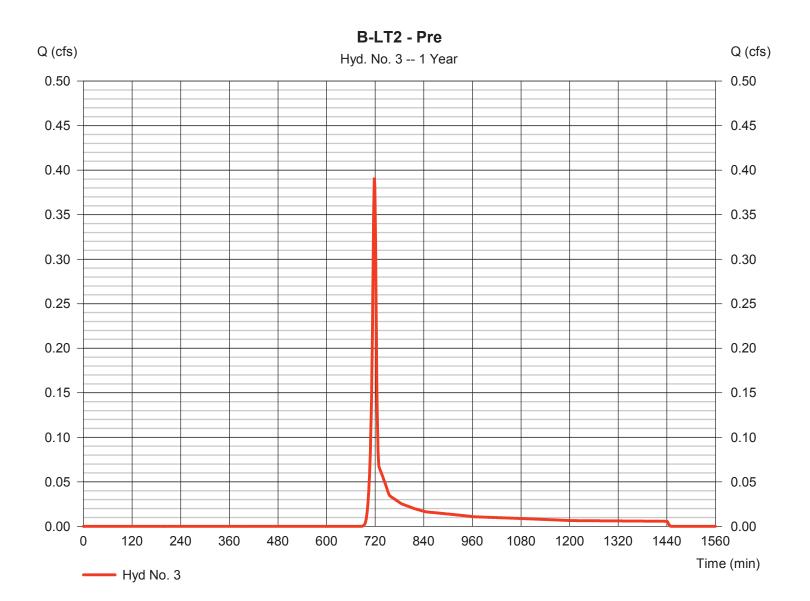

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

B-LT1 - Post

Hydrograph type	= SCS Runoff	Peak discharge	= 0.660 cfs
Storm frequency	= 1 yrs	Time to peak	= 720 min
Time interval	= 1 min	Hyd. volume	= 1,524 cuft
Drainage area	= 0.610 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 9.40 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 91) + (0.480 x 77)] / 0.610

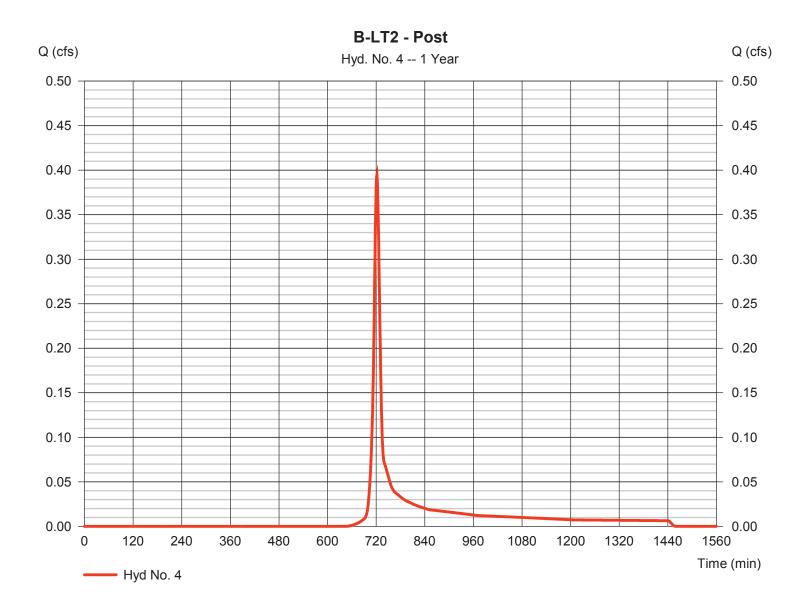

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

B-LT2 - Pre

Hydrograph type	= SCS Runoff	Peak discharge	= 0.392 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 817 cuft
Drainage area	= 0.390 ac	Curve number	= 77*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.10 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.390 x 77)] / 0.390

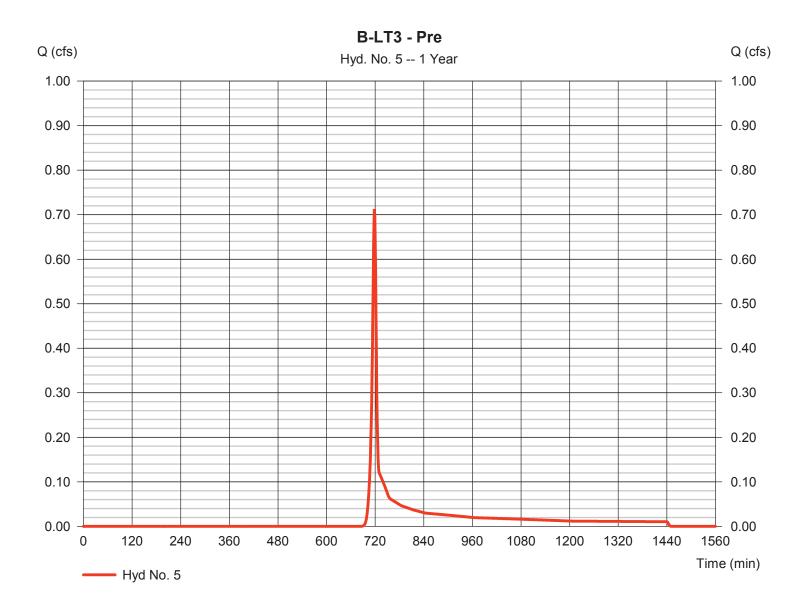

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

B-LT2 - Post

Hydrograph type	= SCS Runoff	Peak discharge	= 0.395 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 1 min	Hyd. volume	= 1,024 cuft
Drainage area	= 0.390 ac	Curve number	= 81*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.43 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.100 x 91) + (0.290 x 77)] / 0.390

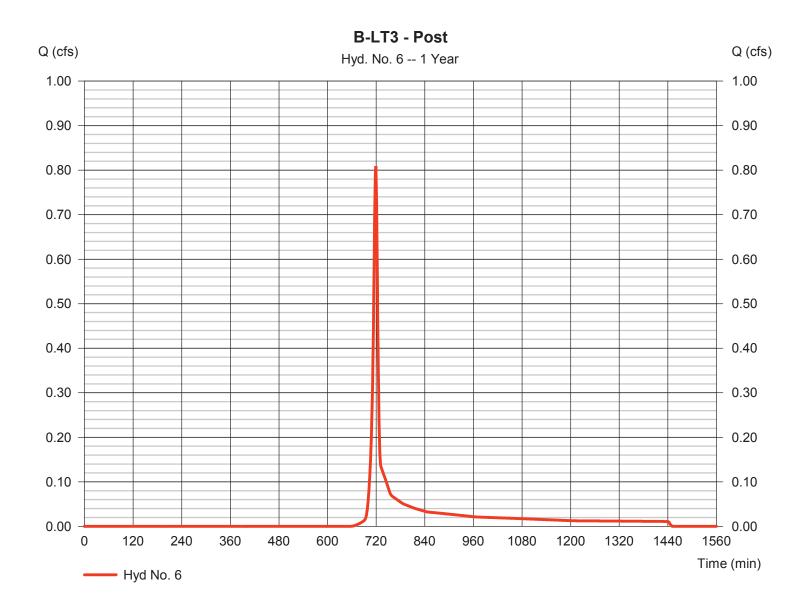

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

B-LT3 - Pre

Hydrograph type	= SCS Runoff	Peak discharge	= 0.713 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 1,487 cuft
Drainage area	= 0.710 ac	Curve number	= 77*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.08 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.710 x 77)] / 0.710

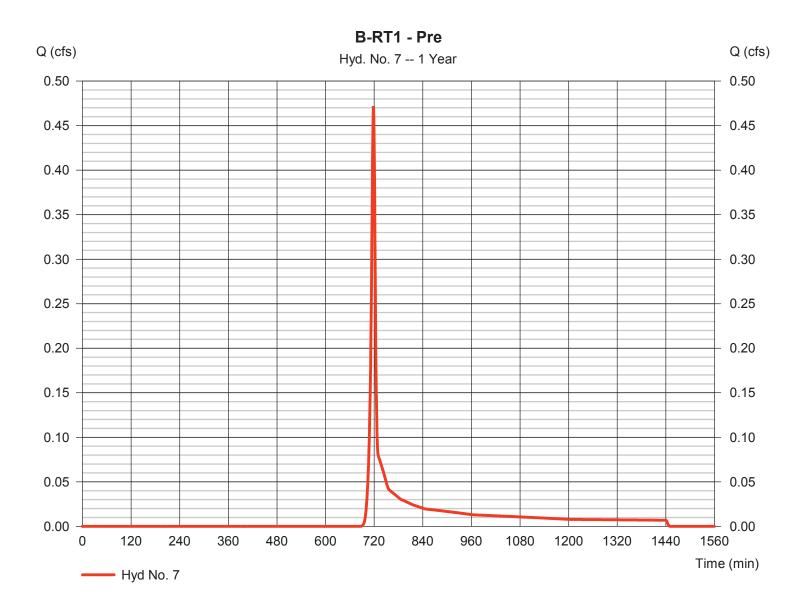

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

B-LT3 - Post

Hydrograph type	= SCS Runoff	Peak discharge	= 0.809 cfs
Storm frequency	= 1 yrs	Time to peak	= 719 min
Time interval	= 1 min	Hyd. volume	= 1,729 cuft
Drainage area	= 0.710 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.89 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.150 x 91) + (0.560 x 77)] / 0.710

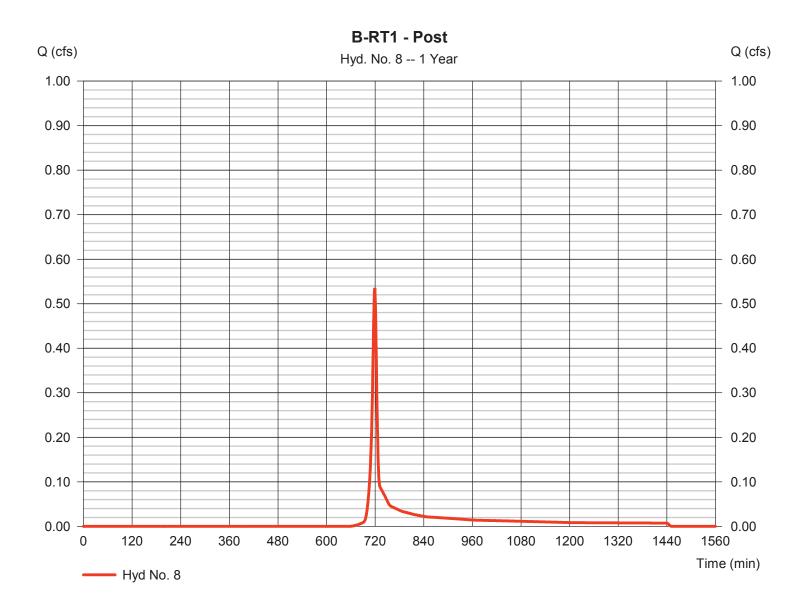

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

B-RT1 - Pre

Hydrograph type	= SCS Runoff	Peak discharge	= 0.472 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 1 min	Hyd. volume	= 985 cuft
Drainage area	= 0.470 ac	Curve number	= 77*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.08 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

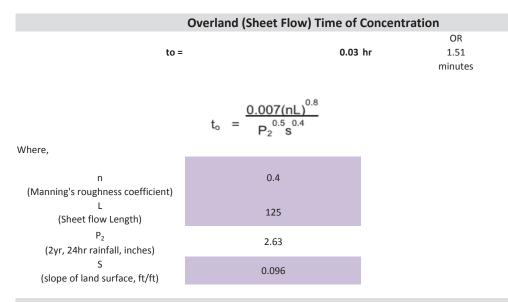
* Composite (Area/CN) = [(0.470 x 77)] / 0.470


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

B-RT1 - Post

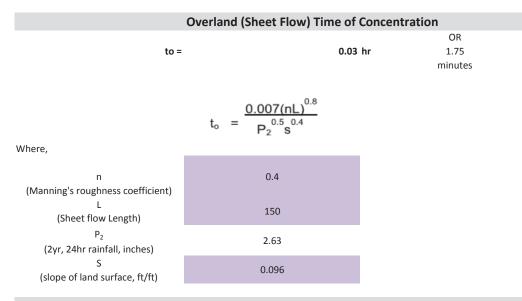
Hydrograph type	= SCS Runoff	Peak discharge	= 0.535 cfs
Storm frequency	= 1 yrs	Time to peak	= 719 min
Time interval	= 1 min	Hyd. volume	= 1,145 cuft
Drainage area	= 0.470 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.20 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


* Composite (Area/CN) = [(0.110 x 91) + (0.360 x 77)] / 0.470

Appendix D

Time of Concentration Calculations

Time of Concentration - Pre Conditions Subarea B Right Ditch #1

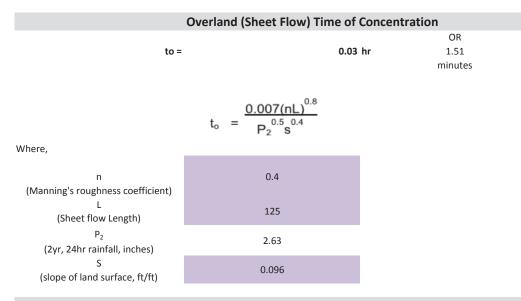

Shallow Time of Concentration

		Depth	Manning's n	Velocity
Flow Type	Minimum tillage cultivation, contour or strip-cropped, and woodlands	0.2	0.101	Use Figure 15-4 to determine Velocity
Slope		ft/ft		
Velocity from Chart	0.7	ft/s		
Length	150	ft		
t =	0.06	hr	3.57	
			minutes	
t _{open} =	0.00	hr		
TOTAL TIME OF CONCENTRATION =	0.08 OR	hr		
CONCENTRATION -	5.08	minutes		

Overland (Sheet Flow) Time of Concentration OR 0.02 hr 1.36 to = minutes $t_{o} = \frac{0.007(nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$ Where, 0.4 n (Manning's roughness coefficient) L 50 (Sheet flow Length) P_2 2.63 (2yr, 24hr rainfall, inches) S 0.02 (slope of land surface, ft/ft) **Open Channel Flow** Calc Check ft² Area = 0.02 0.02 Radius = 0.01 ft 0.01 Slope(ft/ft) = 0.0925 0.03 n = V (velocity) 0.57 ft/sec Drainage Area (acres) = 0.47 acres C (Coefficient of Runoff) = 0.3 1 = 0.11 Q = CiA 0.016 cfs Depth of water in Ditch Width = 2 ft 0.09 Ditch = *in inches Foreslope/Backslope = 4 Length of Ditch = 215 (in feet) 0.10 hr t_{open} = 0.13 hr TOTAL TIME OF OR **CONCENTRATION =** 7.62 minutes

Time of Concentration - Post Conditions Subarea B Right Ditch #1

Time of Concentration - Pre Conditions Subarea B Left Ditch #1

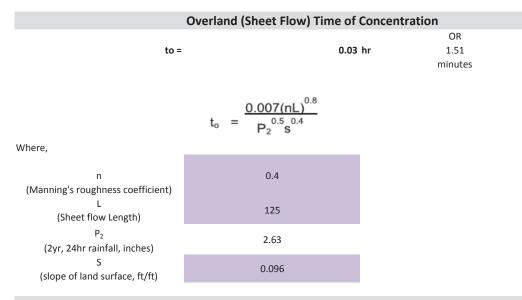

Shallow Time of Concentration

		Depth	Manning's n	Velocity
	Minimum tillage cultivation, contour or strip-cropped, and woodlands	0.2	0.101	Use Figure 15-4 to determine Velocity
Slope		ft/ft		
Velocity from Chart	0.7	ft/s		
Length	150	ft		
t =	0.06	hr	3.57	
			minutes	
t _{open} =	0.00	hr		
TOTAL TIME OF CONCENTRATION =	0.09 or 5.32			

Time of Concentration - Post Conditions Subarea B Left Ditch #1

Overland (Sheet Flow) Time of Concentration				
to =		0.00 hr	OR 0.08 minutes	
Where,	$t_{o} = \frac{0.007(nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$			
n (Manning's roughness coefficient)	0.03			
L (Sheet flow Length)	16			
P ₂ (2yr, 24hr rainfall, inches)	2.63			
S (slope of land surface, ft/ft)	0.0156			
	Open Channel Flow			
	open enamer non		Calc Check	
Area =	0.02	ft ²	0.02	
Radius =	0.01	ft	0.01	
Slope(ft/ft) =	0.045			
n =	0.03			
V (velocity)	0.48	ft/sec		
Drainage Area (acres) =	0.61	acres		
C (Coefficient of Runoff) =	0.3			
=	0.11			
Q = CiA	0.020	cfs		
Ditch Width =	2	ft	Depth of water in Ditch = <i>*in inches</i>	0.12
Foreslope/Backslope =	4		'III IIICHES	
			Length of Ditch =	255
t _{open} =		0.15 hr		
TOTAL TIME OF CONCENTRATION =		0.15 hr OR 8.89 minutes		

Time of Concentration - Pre Conditions Subarea B Left Ditch #2


Shallow Time of Concentration

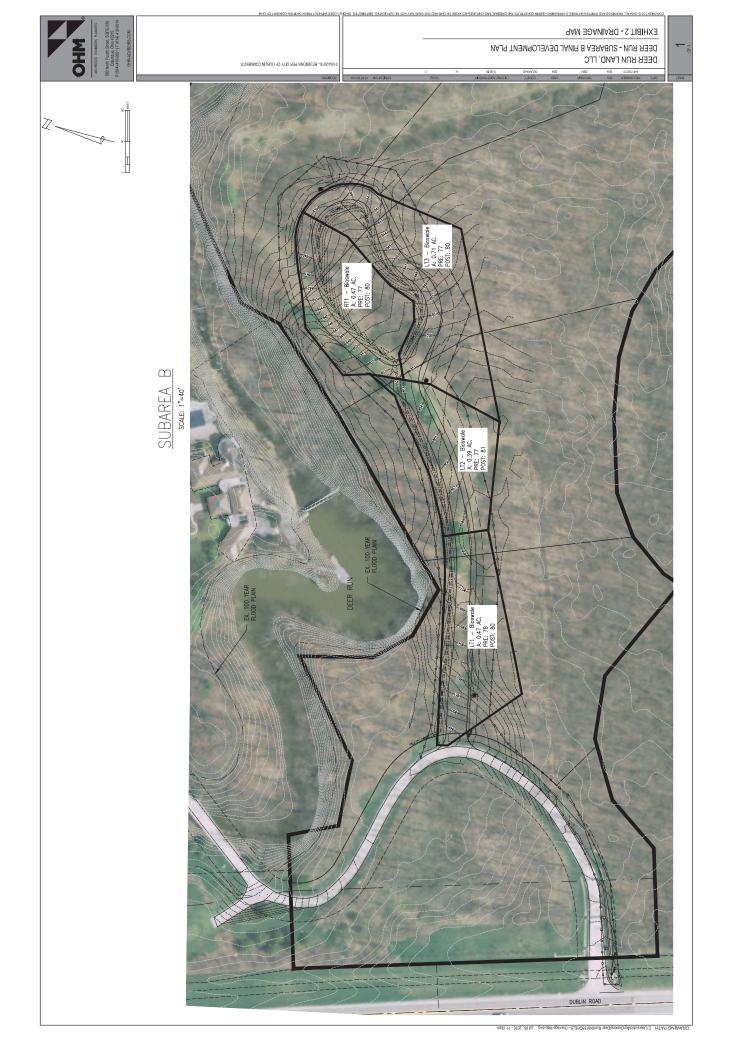
		Depth	Manning's n	Velocity
	Minimum tillage cultivation, contour or strip-cropped, and woodlands	0.2	0.101	Use Figure 15-4 to determine Velocity
Slope		ft/ft		
Velocity from Chart	0.7	ft/s		
Length	150	ft		
t =	0.06	hr	3.57	
			minutes	
t _{open} =	0.00	hr		
TOTAL TIME OF CONCENTRATION =	0.08 or 5.08			

Time of Concentration - Post Conditions Subarea B Left Ditch #2

Overland (Sheet Flow) Time of Concentration				
to =		0.00 hr	OR 0.08 minutes	
Where,	$t_{o} = \frac{0.007(nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$			
n (Manning's roughness coefficient)	0.03			
L (Sheet flow Length)	16			
P ₂ (2yr, 24hr rainfall, inches)	2.63			
S (slope of land surface, ft/ft)	0.0156			
	Open Channel Flow		Calc Check	
Area = Radius = Slope(ft/ft) = n =	0.02 0.01 0.03 0.03	ft ² ft	0.02 0.01	
V (velocity)	0.35	ft/sec		
Drainage Area (acres) = C (Coefficient of Runoff) = I =	0.39 0.3 0.11	acres		
Q = CiA	0.013	cfs		
Ditch Width =	2	ft	Depth of water in Ditch =	0.10
Foreslope/Backslope =	4		*in inches	280
t _{open} =		0.22 hr		200
TOTAL TIME OF CONCENTRATION =		0.22 hr OR 13.43 minutes		

Time of Concentration - Pre Conditions Subarea B Left Ditch #3

Shallow Time of Concentration


		Depth	Manning's n	Velocity
	Minimum tillage cultivation, contour or strip-cropped, and woodlands	0.2	0.101	Use Figure 15-4 to determine Velocity
Slope		ft/ft		
Velocity from Chart	0.7	ft/s		
Length	150	ft		
t =	0.06	hr	3.57	
			minutes	
t _{open} =	0.00	hr		
TOTAL TIME OF	0.08			
CONCENTRATION =	OR 5.08	minutes		

Time of Concentration - Post Conditions Subarea B Left Ditch #3

Overland (Sheet Flow) Time of Concentration				
to =		0.00 hr	OR 0.08 minutes	
Where,	$t_{o} = \frac{0.007(nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$			
n (Manning's roughness coefficient)	0.03			
L (Sheet flow Length)	16			
P ₂ (2yr, 24hr rainfall, inches)	2.63			
S (slope of land surface, ft/ft)	0.0156			
	Open Channel Flow		Calc Check	
Area = Radius = Slope(ft/ft) = n =	0.02 0.01 0.06 0.03	ft ² ft	0.02 0.01	
V (velocity)	0.59	ft/sec		
Drainage Area (acres) = C (Coefficient of Runoff) = I =	0.71 0.3 0.11	acres		
Q = CiA	0.023	cfs	_	
Ditch Width =	2	ft	Depth of water in Ditch =	0.13
Foreslope/Backslope =	4		*in inches	275
÷ -		0.13 hr	Length of Ditch =	275
t _{open} = 0.13 hr				
TOTAL TIME OF CONCENTRATION =		0.13 hr OR 7.89 minutes		

Appendix E

Exhibits

