LOT#4B & 5 UPPER METRO PLACE PRELIMINARY DETENTION REPORT 03/11/2024

INTRODUCTION

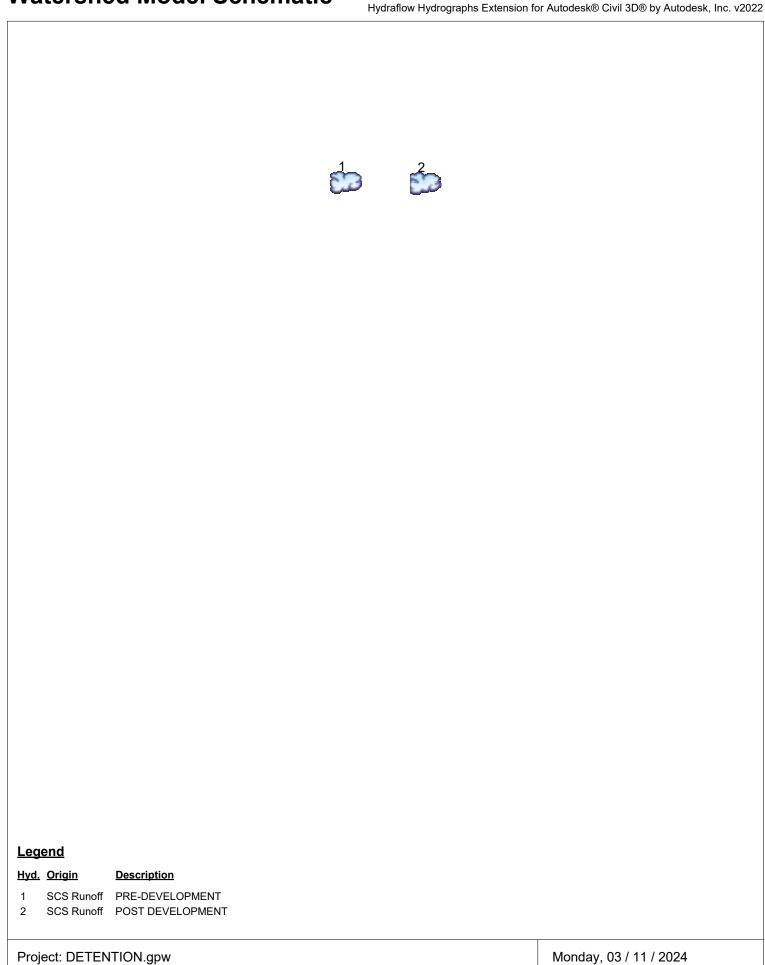
The remainder of proposed Lot #4B and all of Lot #5 are being considered for development as a Multi-Family residential and commercial site. A portion of the parking for the site will be located on Lot 4B. See the drainage map for details.

Currently, The City of Dublin's detention regulations require detention to be based on a critical year storm method. The allowable release rates are governed by the city-wide allowable release rate factor provided by the City.

CRITICAL YEAR STORM & ALLOWABLE RELEASE RATE CALCULATIONS

The critical year storm is determined from the percentage change (PC) from the 1 yr Pre-Developed runoff volume and the 1 yr Post-Developed runoff volume. The Pre-Developed 1 yr. Pre-Developed runoff volume is (6,242 CF) and the 1yr Post Developed runoff volume is (16,616 CF). The PC for this area is a 166% increase in runoff volume. Per City of Dublin Detention Regulations this PC equates to a 25-year critical storm. Meaning that a 25-year post-developed storm runoff rate must be no more than the pre-developed 1-year runoff rate and all storms of higher intensity will not exceed their matching pre-developed runoff rates. See table below for pre-developed allowable release rates.

PRE-DEVELOPED R DUBLIN MASTER PLA CREEK SUB B	AN MONTERREY
STORM	PRE-SITE
RATE (CFS/AC)	RELEASE RATE
	2.25 Acres
	X RATE)
1 YR (0.6 CFS/AC)	1.35 cfs
2 YR (0.7 CFS/AC)	1.58 cfs
5 YR (0.9 CFS/AC)	2.03 cfs
10 YR (1.1 CFS/AC)	2.48 cfs
25 YR (1.4 CFS/AC)	3.15 cfs
50 YR (1.9 CFS/AC)	4.28 cfs
100 YR (2.4 CFS/AC)	5.40 cfs


Since the critical year storm is the 25 year, in the table below are the post developed allowable release rates and storage elevation numbers.

POST DEVELOPED ALLO	WABLE RELEASE RATES
STORM	ALLOWABLE RELEASE
	RATE
1 YEAR	1.35 cfs
2 YEAR	1.35 cfs
5 YEAR	1.35 cfs
10 YEAR	1.35 cfs
25 YEAR	1.35 cfs
50 YEAR	4.28 cfs
100 YEAR	5.40 cfs

INPUT DATA

The site was evaluated using the SCS runoff/hydrograph routing with rainfall depths per table 2-4 of the Dublin Stormwater Management Design Manual. See the attached data sheets and maps for the data.

Detention and Water Quality will be provided in an underground storage facility comprised of sets of connected chambers. Isolation chambers will provide Water quality volume. The isolation chambers outlet through the fabric under the stone bed to a 6" underdrain. The outlet manhole will provide water quality and detention controls. Based on 18% of site area the underground detention facility will need to provide approximately 17,642 Cubic Feet of volume. We feel we have ample area to provide such volume to meet The City of Dublin's stormwater regulations.

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

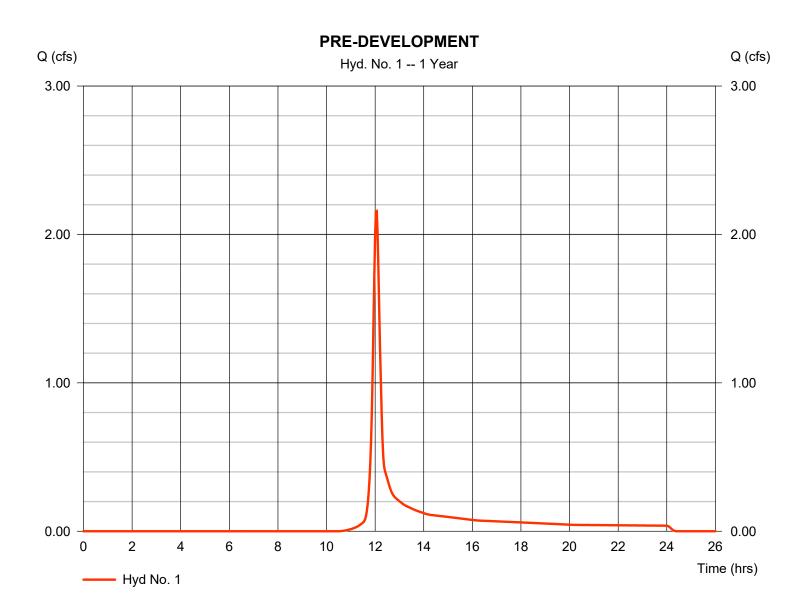
	Inflow	Peak Outflow (cfs)								Hydrograph
type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
SCS Runoff		2.157	3.068		4.451	5.632	7.331	8.762	10.28	PRE-DEVELOPMENT
SCS Runoff		5.802	6.987		8.660	10.03	11.94	13.52	15.18	POST DEVELOPMENT
	type (origin) SCS Runoff	type (origin) hyd(s) SCS Runoff	type (origin) hyd(s) 1-yr SCS Runoff 2.157	type (origin) hyd(s) 1-yr 2-yr SCS Runoff 2.157 3.068	type (origin) hyd(s) 1-yr 2-yr 3-yr SCS Runoff 2.157 3.068	type (origin) hyd(s) 1-yr 2-yr 3-yr 5-yr SCS Runoff 2.157 3.068 4.451	type (origin) hyd(s) 1-yr 2-yr 3-yr 5-yr 10-yr SCS Runoff 2.157 3.068 4.451 5.632	type (origin) hyd(s) 1-yr 2-yr 3-yr 5-yr 10-yr 25-yr SCS Runoff 2.157 3.068 4.451 5.632 7.331	type (origin) hyd(s) 1-yr 2-yr 3-yr 5-yr 10-yr 25-yr 50-yr SCS Runoff 2.157 3.068 4.451 5.632 7.331 8.762	type (origin) hyd(s) 1-yr 2-yr 3-yr 5-yr 10-yr 25-yr 50-yr 100-yr SCS Runoff 2.157 3.068 4.451 5.632 7.331 8.762 10.28

Proj. file: DETENTION.gpw

Monday, 03 / 11 / 2024

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.157	2	724	6,242				PRE-DEVELOPMENT
1 2	SCS Runoff SCS Runoff	2.157 5.802	2 2	724	6,242 16,616				PRE-DEVELOPMENT POST DEVELOPMENT
	TENTION.gp					Period: 1 Ye			3 / 11 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Monday, 03 / 11 / 2024

Hyd. No. 1

PRE-DEVELOPMENT

Hydrograph type = SCS Runoff Peak discharge = 2.157 cfsStorm frequency Time to peak = 12.07 hrs= 1 yrsTime interval = 2 min Hyd. volume = 6,242 cuft= 2.250 acCurve number Drainage area = 82* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 16.50 min = TR55 Total precip. = 2.20 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(1.220 x 89) + (1.030 x 74)] / 2.250

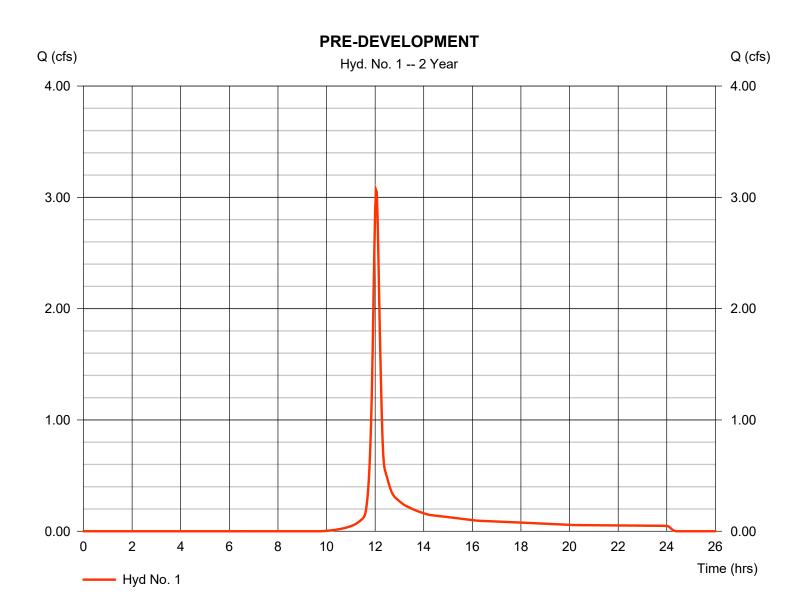
TR55 Tc Worksheet

Hyd. No. 1PRE-DEVELOPMENT

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%) Travel Time (min)	= 0.240 = 15.0 = 2.63 = 0.10	+	0.011 0.0 0.00 0.00	+	0.011 0.0 0.00 0.00	=	11.44
maver mile (mili)	- 11.44	•	0.00	т	0.00	_	11.44
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 283.00 = 0.34 = Unpaved =0.94	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 5.01	+	0.00	+	0.00	=	5.01
Channel Flow							
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015		0.00 0.00 0.00 0.015		
					0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							16.50 min

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	3.068	2	722	8,715				PRE-DEVELOPMENT
1 2									PRE-DEVELOPMENT POST DEVELOPMENT
DE	TENTION.gp	w			Return P	eriod: 2 Ye	ear	Monday, 03	3 / 11 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Monday, 03 / 11 / 2024

Hyd. No. 1

PRE-DEVELOPMENT

Hydrograph type = SCS Runoff Peak discharge = 3.068 cfsStorm frequency = 2 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 8,715 cuft= 2.250 acCurve number Drainage area = 82* = 0.0 % Basin Slope Hydraulic length = 0 ftTc method Time of conc. (Tc) = 16.50 min = TR55 Total precip. = 2.63 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(1.220 x 89) + (1.030 x 74)] / 2.250

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.451	2	722	12,505				PRE-DEVELOPMENT
1 2									PRE-DEVELOPMENT POST DEVELOPMENT
DE	TENTION.gp	W			Return F	Period: 5 Ye	ear	Monday, 03	3 / 11 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 03 / 11 / 2024

Hyd. No. 1

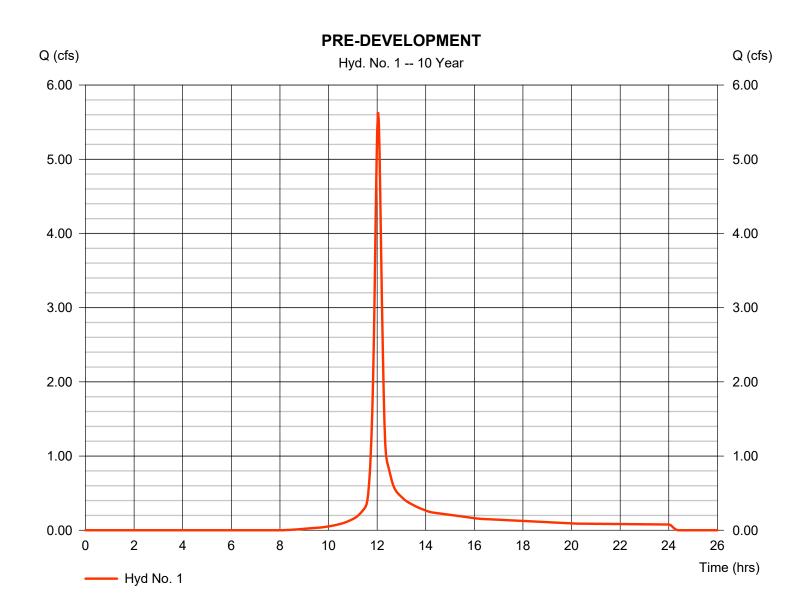
PRE-DEVELOPMENT

Hydrograph type = SCS Runoff Peak discharge $= 4.451 \, \text{cfs}$ Storm frequency Time to peak $= 12.03 \, hrs$ = 5 yrsTime interval = 2 min Hyd. volume = 12.505 cuft= 2.250 acDrainage area Curve number = 82* Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = TR55 $= 16.50 \, \text{min}$ Total precip. = 3.24 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(1.220 x 89) + (1.030 x 74)] / 2.250

1 SCS Runoff 5.632 2 722 15,788 PRE-DEVELOPMENT 2 SCS Runoff 10.03 2 720 29,528 POST DEVELOPMENT	
2 SCS Runoff 10.03 2 720 29,528 POST DEVELOPMENT	
DETENTION.gpw Return Period: 10 Year Monday, 03 / 11 / 2024	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Monday, 03 / 11 / 2024

Hyd. No. 1

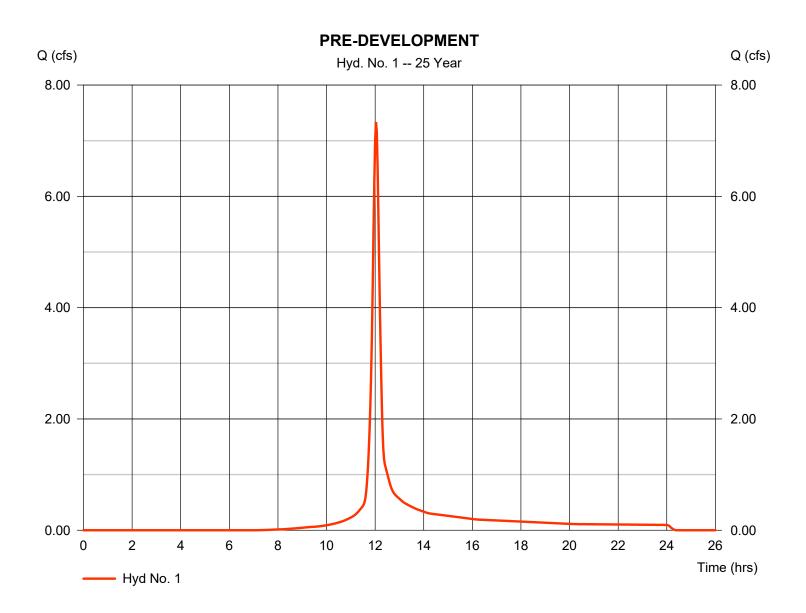
PRE-DEVELOPMENT

Hydrograph type = SCS Runoff Peak discharge = 5.632 cfsStorm frequency = 10 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 15.788 cuft Curve number Drainage area = 2.250 ac= 82* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = TR55 $= 16.50 \, \text{min}$ Total precip. = 3.74 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = $[(1.220 \times 89) + (1.030 \times 74)] / 2.250$

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	7.331	2	722	20,573				PRE-DEVELOPMENT
1 2	SCS Runoff SCS Runoff	7.331 11.94	2 2	722 720	20,573 35,410				PRE-DEVELOPMENT POST DEVELOPMENT
	TENTION.gp					Period: 25 Y			3 / 11 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Monday, 03 / 11 / 2024

Hyd. No. 1

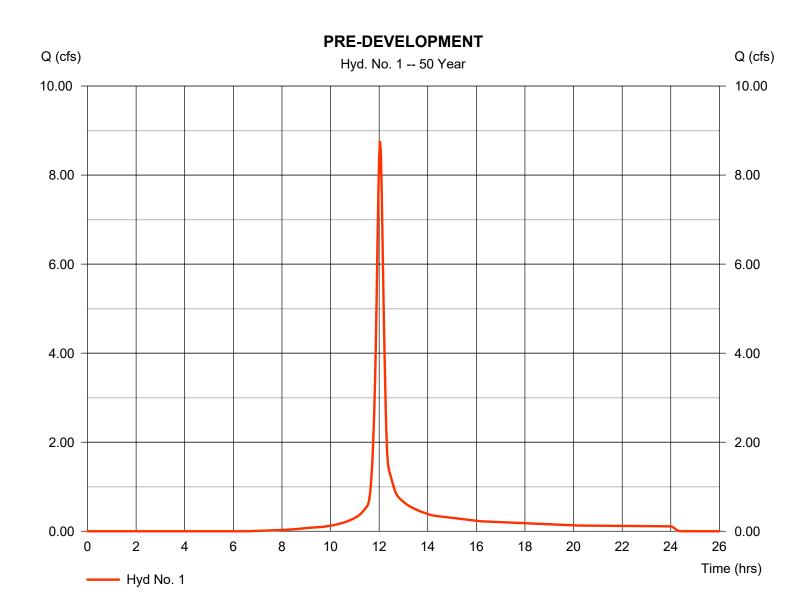
PRE-DEVELOPMENT

= SCS Runoff Hydrograph type Peak discharge = 7.331 cfsStorm frequency = 25 yrs Time to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 20,573 cuft= 2.250 acCurve number Drainage area = 82* = 0.0 % Basin Slope Hydraulic length = 0 ftTc method Time of conc. (Tc) = 16.50 min = TR55 Total precip. = 4.44 inDistribution = Type II Shape factor Storm duration = 24 hrs = 484

^{*} Composite (Area/CN) = [(1.220 x 89) + (1.030 x 74)] / 2.250

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	8.762	2	722	24,662				PRE-DEVELOPMENT
1 2									PRE-DEVELOPMENT POST DEVELOPMENT
DE	TENTION.gp	w			Return P	eriod: 50 Y	ear	Monday, 03	3 / 11 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Monday, 03 / 11 / 2024

Hyd. No. 1

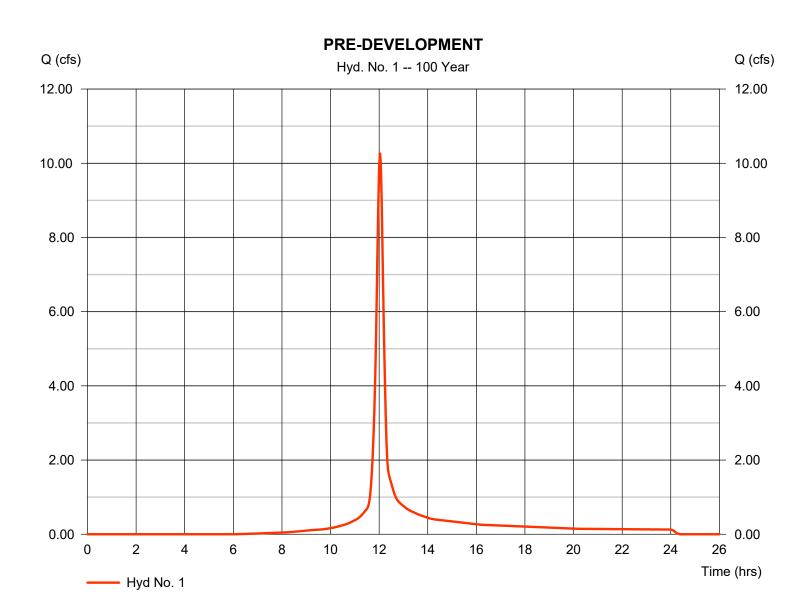
PRE-DEVELOPMENT

Hydrograph type = SCS Runoff Peak discharge = 8.762 cfsStorm frequency = 50 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 24.662 cuft = 2.250 acCurve number Drainage area = 82* = 0.0 % Basin Slope Hydraulic length = 0 ftTc method Time of conc. (Tc) = 16.50 min = TR55 Total precip. = 5.02 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(1.220 x 89) + (1.030 x 74)] / 2.250

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.28	2	722	29,052				PRE-DEVELOPMENT
1 2									PRE-DEVELOPMENT POST DEVELOPMENT
DE	TENTION.gp	w			Return F	Period: 100	Year	Monday, 03	3 / 11 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Monday, 03 / 11 / 2024

Hyd. No. 1

PRE-DEVELOPMENT

Hydrograph type = SCS Runoff Peak discharge = 10.28 cfsStorm frequency = 100 yrsTime to peak $= 12.03 \, hrs$ Time interval = 2 min Hyd. volume = 29.052 cuft Drainage area = 2.250 acCurve number = 82* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method Time of conc. (Tc) = 16.50 min = TR55 Total precip. = 5.63 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

^{*} Composite (Area/CN) = [(1.220 x 89) + (1.030 x 74)] / 2.250

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 03 / 11 / 2024

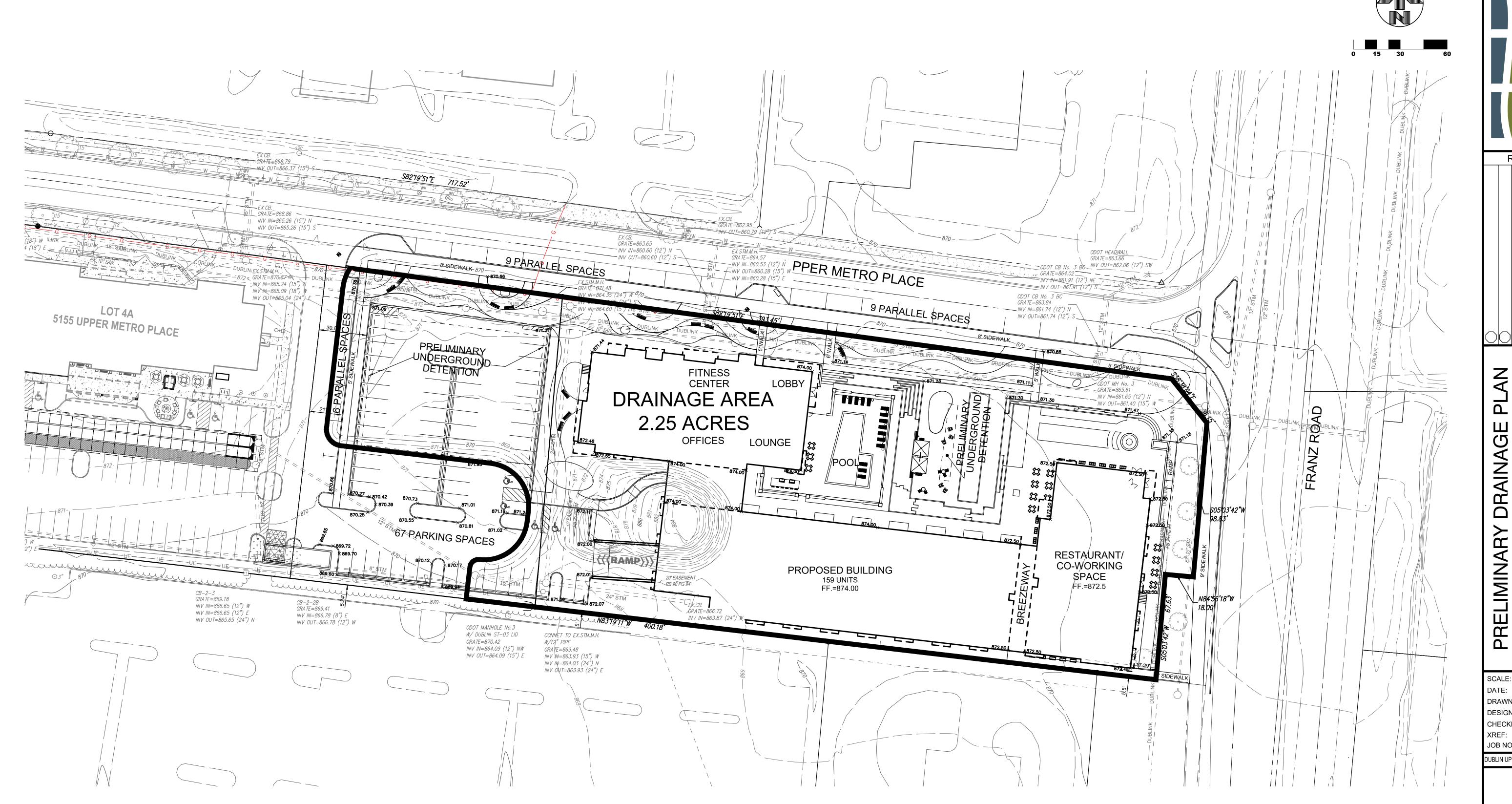
Return Period	Intensity-Du	uration-Frequency E	quation Coefficients	(FHA)	
(Yrs)	В	D	E	(N/A)	
1	43.2760	9.5000	0.8680		
2	58.8730	10.7000	0.8918		
3	0.0000	0.0000	0.0000		
5	52.7607	9.2000	0.8164		
10	55.4107	8.9000	0.7956		
25	51.2475	7.6000	0.7408		
50	45.9728	6.3000	0.6905		
100	44.8155	5.7000	0.6609		
				1	

File name: City of Dublin-Ohio-idf.IDF

Intensity = B / (Tc + D)^E

Return Period (Yrs)	Intensity Values (in/hr)											
	5 min	10	15	20	25	30	35	40	45	50	55	60
1	4.25	3.28	2.69	2.29	2.00	1.78	1.61	1.46	1.35	1.25	1.16	1.09
2	5.05	3.95	3.25	2.78	2.43	2.16	1.95	1.78	1.63	1.51	1.41	1.32
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.05	4.73	3.91	3.36	2.95	2.64	2.39	2.19	2.03	1.89	1.76	1.66
10	6.83	5.35	4.43	3.81	3.36	3.01	2.73	2.51	2.32	2.16	2.03	1.91
25	7.84	6.12	5.09	4.39	3.88	3.49	3.18	2.93	2.72	2.54	2.39	2.26
50	8.62	6.69	5.56	4.81	4.26	3.85	3.52	3.25	3.03	2.84	2.68	2.54
100	9.36	7.26	6.05	5.24	4.66	4.22	3.87	3.58	3.35	3.15	2.97	2.82

Tc = time in minutes. Values may exceed 60.


Precip. file name: R:\RESOURCES\Design tools\CITY OF DUBLIN OHIO-PRECIP.pcp

	Rainfall Precipitation Table (in)									
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour	2.20	2.63	0.00	3.24	3.74	4.44	5.02	5.63		
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

watersned Model Schematic	1
Hydrograph Return Period Recap	2
1 - Year Summary Report Hydrograph Reports Hydrograph No. 1, SCS Runoff, PRE-DEVELOPMENT TR-55 Tc Worksheet	 4 4
2 - Year Summary Report Hydrograph Reports Hydrograph No. 1, SCS Runoff, PRE-DEVELOPMENT	7
5 - Year Summary Report Hydrograph Reports Hydrograph No. 1, SCS Runoff, PRE-DEVELOPMENT	9
10 - Year Summary ReportHydrograph ReportsHydrograph No. 1, SCS Runoff, PRE-DEVELOPMENT	. 11
25 - Year Summary ReportHydrograph ReportsHydrograph No. 1, SCS Runoff, PRE-DEVELOPMENT	. 13
50 - Year Summary ReportHydrograph ReportsHydrograph No. 1, SCS Runoff, PRE-DEVELOPMENT	. 15
100 - Year Summary ReportHydrograph ReportsHydrograph No. 1, SCS Runoff, PRE-DEVELOPMENT	. 17
IDF Report	. 18

PRELIMINARY DRAINAGE PLAN DUBLIN UPPER METRO APARTMENTS

UPPER METRO PLACE, LOTS 4B & 5 5565 UPPER METRO PLACE CITY OF DUBLIN, FRANKLIN COUNTY, OHIO SCALE: 1"=30' MARCH 8, 2024

REVISIONS

C DRAINAGE PLAN

METRO APARTMENTS

Delace lots 48 & 5

SCALE: 1"=30'
DATE: MARCH 8, 2024
DRAWN: SAD
DESIGNED: SAD
CHECKED: RVP
XREF:
JOB NO.: 21032

DUBLIN UPPER METRO APARTMENT

Page

1

Of
1