

Engineers, Surveyors, Planners, Scientists

MUNITIE

MEMO	0	MATTHEW R.
Date:	March 25, 2024	E-82378
To:	City of Dublin	THE REDISTER OF
From:	Matt Stechschulte, PE, CFM	MONAL ENT
Subject:	Light Bridge SWMP	Matt Struth
Copies:		3-25-24

This memo summarizes the stormwater management approach for the Light Bridge project located at the northwest corner of Rings Road and Frantz Road. The proposed project was analyzed under the Dublin Smart Parking Lot Stormwater Management Plan (SWMP) dated May 19, 2017. The Dublin Smart Parking Lot report accounted for the Corners project area within Subarea 03 which discharges to Wet Basin 01. Wet Basin 01 is interconnected with Wet Basin 02 before discharging east across Frantz Road. Subarea 03 was to be developed at 75% impervious cover per the Smart Parking Lot SWMP. The proposed project was calculated to be 72% impervious which is less than what was assumed. Due to the proposed project containing less impervious cover than what was assumed in the Dublin Smart Parking Lot SWMP the existing BMPs (Wet Basins 01 & 02) are able to adequately proposed quantity and quality control for the proposed development without the need for any modifications.

APPENDIX A:

Water Quality Calculations

Project Name: Dublin Smart Parking Lot

Water Quality Volume Calculation

<u>Wet Basins 01 & 02</u>	
Area =	26.159 acres
% imp =	0.72
C =	0.51
WQv =	0.840 ac-ft
0.00	
<u>Offsife</u>	
Area =	29.343 acres
% imp =	0.73
C =	0.53
WQv =	0.965 ac-ft
75% of WQv= (for wet basins)	1.354 ac-ft
WQv Elevation=	862.92 feet

Water quality volume calculated using the Ohio EPA formula

Ohio EPA formula

$$WQv = \frac{C \times P \times A}{12}$$

 $\begin{array}{l} A = area \; (acres) \\ P = 0.75'' \\ C = runoff \; coefficient \; (calculated \; using \; the \; ASCE \; method) \end{array}$

 $C = 0.858i^3 - 0.78i^2 + 0.774i + 0.04$

Where i = fraction of post-construction impervious surface

Summary for Pond 14P: Wet Basins 01 & 02 WQ @ 862.92'

Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af
Outflow	=	1.11 cfs @	0.00 hrs, Volume=	1.283 af, Atten= 0%, Lag= 0.0 min
Primary	=	1.11 cfs @	0.00 hrs, Volume=	1.283 af

Routing by Stor-Ind method, Time Span= 0.00-60.00 hrs, dt= 0.01 hrs Starting Elev= 862.92' Surf.Area= 1.564 ac Storage= 1.360 af Peak Elev= 862.92' @ 0.00 hrs Surf.Area= 1.564 ac Storage= 1.360 af

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert /	Avail.Storage	Storage Descr	iption			
#1	862.00'	5.548 af	Wet Basin 01	(Prismatic)	Listed below ((Recalc)	
#2	862.00'	3.834 af	Wet Basin 02	(Prismatic)	Listed below (Recalc	
		9.382 af	Total Available	Storage			
				-			
Elevatio	n Surf.Area	a Inc.Sto	ore Cum.S	tore			
(feet	t) (acres) (acre-fe	et) (acre-f	eet)			
862.0	0 0.82 ⁻	7 0.0	00 0.	.000			
863.0	0 0.93	7 0.8	82 0.	.882			
864.0	0 1.05	0.9	93 1.	.875			
865.0	0 1.16	5 1.1	07 2.	.983			
866.0	0 1.28	2 1.2	.24 4.	.207			
866.5	0 1.34	2 0.6	56 4.	.862			
867.0	0 1.40	1 0.6	686 5.	.548			
Elevetia				1-v-			
Elevatio	n Surt.Area		ore Cum.S	tore			
	l) (acres) (acre-ie	el) (acre-i				
862.0	0 0.56	6 0.0	00 0.	.000			
863.0	0 0.64	2 0.6	604 O.	.604			
864.0	0 0.720	0.6		.285			
865.0	0 0.80	1 0.7	60 2.	.045			
866.0	0 0.884	4 0.8	343 2 .	.888			
866.5	0 0.950	0.4	-59 3.	.347			
867.0	0 0.998	8 0.4	-87 3.	.834			
Device	Routing	Invert Out	let Devices				
#1	Primary	862.00' 5.0 '	" Vert. WQ orifi	ce X 2.00	C= 0.600		
	··			· · · · · / -			

Primary OutFlow Max=1.11 cfs @ 0.00 hrs HW=862.92' (Free Discharge) **1=WQ orifice** (Orifice Controls 1.11 cfs @ 4.06 fps)

Pond 14P: Wet Basins 01 & 02 WQ @ 862.92'

Hydrograph for Pond 14P: Wet Basins 01 & 02 WQ @ 862.92'

Time	Inflow	Storage	Elevation	Primary
(hours)	(cfs)	(acre-feet)	(feet)	(cfs)
0.00	0.00	1.360	862.92	1.11
2.00	0.00	1.185	862.81	1.02
4.00	0.00	1.025	862.70	0.92
6.00	0.00	0.880	862.61	0.83
8.00	0.00	0.751	862.52	0.73
10.00	0.00	0.637	862.44	0.64
12.00	0.00	0.540	862.38	0.54
14.00	0.00	0.459	862.32	0.44
16.00	0.00	0.394	862.28	0.35
18.00	0.00	0.343	862.24	0.28
20.00	0.00	0.302	862.21	0.22
22.00	0.00	0.269	862.19	0.18
24.00	0.00	0.241	862.17	0.15
26.00	0.00	0.219	862.16	0.13
28.00	0.00	0.200	862.14	0.11
30.00	0.00	0.183	862.13	0.09
32.00	0.00	0.169	862.12	0.08
34.00	0.00	0.157	862.11	0.07
36.00	0.00	0.146	862.10	0.06
38.00	0.00	0.137	862.10	0.05
40.00	0.00	0.129	862.09	0.05
42.00	0.00	0.121	862.09	0.04
44.00	0.00	0.114	862.08	0.04
46.00	0.00	0.108	862.08	0.04
48.00	0.00	0.103	862.07	0.03
50.00	0.00	0.097	862.07	0.03
52.00	0.00	0.093	862.07	0.03
54.00	0.00	0.088	862.06	0.02
56.00	0.00	0.085	862.06	0.02
58.00	0.00	0.081	862.06	0.02
60.00	0.00	0.078	862.06	0.02

APPENDIX B:

Dublin Smart Parking Lot SWMP

PROJECT SUMMARY

Project Name:	Dublin Smart Parking Lot
Location:	City of Dublin, Franklin County, Ohio
Туре:	Stormwater Management Plan
Reviewing Agency:	City of Dublin, Ohio EPA

HYDROLOGIC SUMMARY

Rainfall Data:	City of Dub	lin Stormwater Management Design Manual
	1-yr	2.20"
	2-yr	2.63"
	5-yr	3.24"
	10-yr	3.74"
	25-yr	4.44"
	50-yr	5.02"
	100-yr	5.63"
Rainfall Distribution:		II 24 hour

Rainfall Distribution:	NRCS Type II 24 hour
Detention Policy:	City of Dublin
Water Quality:	City of Dublin, Ohio EPA
Hydrology Modeling Program:	Autodesk Storm and Sanitary Analysis 2015

DESIGN SUMMARY

Detention:	Wet Basin, Bioretention Basins, and Pervious Pavers
Water Quality:	Wet Basin, Bioretention Basins, silva cells, and Pervious
	Pavers
Receiving Water Body:	Existing storm sewer network that eventually discharges
	into the Scioto River

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Hydrologic Analysis	1
3.0	Pre-Developed Analysis	1
4.0	Post-Developed Analysis	2
5.0	Outlet Design	9
6.0	Water Quality	11
7.0	Sediment Basin Calculations	12
8.0	Conclusion	12

TABLES

Table 1 - Pre-developed Subarea Characteristics	1
Table 2 - Pre-developed Peak Flow Rates	2
Table 3 - Post-developed Subarea Characteristics	3
Table 4 - Dublin Smart Lot Subarea Characteristics	3
Table 5 - Subareas 01 and 03 Allowable Release Rates/Acre (Dublin Master Plan)	5
Table 6 - Subarea 02 Allowable Release Rates/Acre (Dublin Master Plan)	6
Table 7 - Total Allowable and Proposed Release Rates	6
Table 8 - BMP Performance Summary	7
Table 9 - Water Quality Calculations	.11
Table 10 - Bioretention Basin Summary Data	.12
Table 11 - Sediment Basin Calculations	.12

APPENDICES

Appendix A:	Drainage Calculations for Duke Weeks Realty Corporation at 5100 & 5000 Rings
	Road Nationwide Campus Report

- Appendix B: Storm Sewer Calculations
- Appendix C: Water Quality Calculations
- Appendix D: HydroCAD and SSA Output

Appendix E: Exhibits

1.0 INTRODUCTION

The following report provides a detailed analysis and design of the Stormwater Management Plan for the Dublin Smart Parking Lot development in the City of Dublin, Franklin County, Ohio. The proposed site is located along Blazer Parkway, north of Rings Road and west of Frantz Road. The proposed project area involves the development of commercial lot and open space into commercial development and an innovative parking lot involving several stormwater BMPs. The Stormwater management Plan was prepared in accordance with the requirements of both the City of Dublin and the Ohio EPA. The runoff from this site will be routed through a wet basin, bioretention basins, silva cells, or pervious pavers for quantity and quality control before discharging to an existing outfall on the southeast side of the site. The outfall will enter an existing storm sewer network which eventually discharges into the Scioto River.

2.0 HYDROLOGIC ANALYSIS

Hydrologic parameters such as Runoff Curve Number (RCN) and Time of Concentration were determined using standard Natural Resources Conservation Service (NRCS) methodology. The 1-, 2-, 5-, 10-, 25-, 50-, and 100-year storm event discharge amounts were calculated using the NRCS TR-55 method. This analysis reflects the NRCS Type II distribution, 24-hr storm duration. Rainfall depths were obtained from the City of Dublin Stormwater Management Design Manual. The peak flow rates were computed using the Autodesk Storm and Sanitary Analysis 2015 computer program.

3.0 PRE-DEVELOPED ANALYSIS

The pre-developed condition, as seen on Exhibit 1 in Appendix E, consists of open space in Type "C/D" soils (Crosby silt loam, Crosby-Urban land complex, Kokomo silty clay loam, and Miamian silt loam). Pre-developed 01 consists of a commercial building, associated hardscape, and open space for future development. Pre-developed 02 consists of open space. Pre-developed 01, Pre-developed 02, and 4 offsite areas currently drain into an existing wet basin at the southeast corner of the site. The existing wet basin serves as water quantity control for the site before discharging into an existing storm sewer network. The storm sewer network then discharges into the Scioto River.

Pre-developed subarea characteristics are detailed in Table 1. Time of concentration calculations are included in the HydroCAD output in Appendix D. The time of concentration flow paths can be found on Exhibit 1. The pre-developed subareas are located within subareas 1650, 1660, 1680, 1690, 1710, 1720, 1730, and 1740 of the Southwest Unconsolidated Watershed per the City of Dublin's Stormwater master Plan. Table 2 shows the pre-developed peak flow rates for each subarea.

	Tributary		Runoff		Time of			
Subarea	Area		Curve	Percent	Concentration			
Identifier	(acres)	Land Usage	Number	Impervious	(min)			
Pre-								
developed 01	25.21	Open space	74	0%	22.9			
Pre-								
developed 02	8.29	Open space	74	0%	19.7			

Table 1 - Pre-developed Subarea Characteristics

The defendence of the defenden	
Pre-developed 01 Peak Flow Rates (cfs)	Pre-developed 02 Peak Flow Rates (cfs)
9.40	3.43
15.75	5.72
26.02	9.42
35.27	12.75
49.15	17.72
61.21	22.04
74.30	26.72
	Pre-developed 01 Peak Flow Rates (cfs) 9.40 15.75 26.02 35.27 49.15 61.21 74.30

4.0 POST-DEVELOPED ANALYSIS

The post-developed conditions, as seen on Exhibit 2 in Appendix E, consist of three subareas. Subarea 01 consists of an existing commercial building, associated parking lot, and the proposed Wet Basins. Subarea 02 consists of the Smart Parking Lot. Subarea 03 consists of open space and an assumed future development equivalent to 75% impervious. The existing wet basin at the southeast side of the site, designed under the "Duke Weeks Realty Corporation at 5100 & 5000 Rings Road Nationwide Campus" report dated September 27, 2000, will be filled in and replaced with Wet Basin 01 and Wet Basin 02 for water quality and quantity control.

Subarea 01, Subarea 03, Offsite 01, Offsite 02, Offsite 03, and Offsite 04 will utilized Wet Basin 01 and Wet Basin 02 (which are interconnected) for water quality and quantity control. Wet Basins 01 and 02 will outlet into a proposed channel, which will release into the existing storm sewer network.

Subarea 02 has been broken up further, as seen on Exhibit 3 in Appendix E, into tributary areas to each BMP. The Dublin Smart Parking lot will have a total of 4 pervious paver areas, 5 bioretention basins, and 4 silva cell systems that will all outlet into the proposed channel, which will release into the existing storm sewer network.

Post-developed subarea characteristics are detailed in Table 3. The breakdown of Subarea 02 is detailed in Table 4. SSA output is provided in Appendix D.

	Tributary		Runoff		Time of
Subarea	Area		Curve	Percent	Concentration
Identifier	(acres)	Land Usage	Number	Impervious	(min)
Subarea		Commercial			
01	14.97	Development	91	70%	5.0
Subarea					
02	8.29	Parking Lot	96	90%	5.0
Subarea		Future Commercial			
03	10.24	Development	92	<mark>75%</mark>	5.0
		Commercial			
Offsite 01	9.91	Development	94	85%	10.0
		Commercial			
Offsite 02	11.21	Development	93	78%	8.5
Offsite 03	2.50	Open Space	74	0%	9.0
		Commercial			
Offsite 04	5.72	Development	94	85%	10.0

Table 3 - Post-developed	Subarea Characteristics
--------------------------	-------------------------

Table 4 - Dublin Smart Lot Subarea Characteristics

	Tributary	
	Area	
BMP Identifier	(acres)	Control Type
		Quality and
Bioretention Basin 01	1.39	Quantity
		Quality and
Bioretention Basin 02	0.52	Quantity
		Quality and
Bioretention Basin 03	1.35	Quantity
		Quality and
Bioretention Basin 04	0.81	Quantity
		Quality and
Bioretention Basin 05	1.44	Quantity
		Quality and
Pervious Pavers 01	0.28	Quantity
		Quality and
Pervious Pavers 02	0.63	Quantity
		Quality and
Pervious Pavers 03	0.28	Quantity
		Quality and
Pervious Pavers 04	0.65	Quantity
		Quality and
Wet Basin 01	0.52	Quantity
		Quality and
Wet Basin 02	0.43	Quantity

The 1-year runoff volume for Subareas 01 and 03 increases to 2.882 ac-ft, an increase of 207% from the existing condition (Pre-developed 01), which results in 25-year critical storm event.

% Increase = $[(2.882 - 0.940)/0.940] \times 100 = 207\%$ 25-Yr Critical Storm

The 1-year runoff volume for Subarea 02 increases to 1.222 ac-ft, an increase of 295% from the existing condition, which results in 50-year critical storm event.

% Increase = [(1.222 - 0.309)/0.309] x 100 = 295% 50-Yr Critical Storm

Table 5 shows the allowable release rates for Subareas 01 and 03 per the Dublin Master Plan. Table 6 shows the allowable release rates for Subarea 02 per the Dublin Master Plan. Table 7 shows the total allowable release rates and the proposed release rates to the proposed channel. Table 8 shows the performance summary for all of the BMPs onsite.

Table 5 - Subareas 01 and 03 Allowable Release Rates/Acre (Dublin Master Plan)

Allowable Release Rates per Acre

Southwest Unconsolidated

Sub-Basin	1-year	2-year	5-year	10-year	25-year	50-year	100-year
1650	1.00	1.20	1.70	2.10	2.70	3.60	4.40
1660	1.50	2.10	3.20	4.00	4.80	5.80	6.60
1680	1.00	1.30	1.70	2.10	2.80	3.70	4.50
1690	0.80	1.00	1.30	1.70	2.20	3.00	3.80
1710	0.60	0.70	1.00	1.20	1.70	2.30	3.00
1720	1.70	2.20	2.80	3.40	4.20	5.20	6.00
1730	0.90	1.10	1.40	1.90	2.60	3.60	4.70
1740	1.00	1.20	1.60	2.10	2.90	4.00	5.10

Post-Developed Area per Sub-Basin

	Area
Sub-Basin	(Acres)
1650	2.52
1660	0.32
1680	0.03
1690	0.14
1710	21.74
1720	0.11
1730	0.11
1740	0.24

Allowable Release Rates per Acre

Southwest Unconsolidated

Sub-Basin	1-year	2-year	5-year	10-year	25-year	50-year	100-year
1650	2.52	3.02	4.28	5.29	6.80	9.07	11.08
1660	0.47	0.66	1.01	1.26	1.51	1.83	2.08
1680	0.03	0.04	0.06	0.07	0.09	0.12	0.15
1690	0.11	0.14	0.19	0.24	0.31	0.43	0.54
1710	13.04	15.22	21.74	26.09	36.96	50.00	65.22
1720	0.18	0.23	0.30	0.36	0.45	0.55	0.64
1730	0.10	0.12	0.15	0.21	0.29	0.40	0.52
1740	0.24	0.29	0.39	0.51	0.70	0.97	1.23
Total	16.70	19.73	28.11	34.03	47.11	63.37	81.46

Table 6 - Subarea 02 Allowable Release Rates/Acre (Dublin Master Plan)

Southwest Unconsolidated

Allowable Release Rates per Acre

Sub-Basin	1-year	2-year	5-year	10-year	25-year	50-year	100-year
1710	0.6	0.7	1.0	1.2	1.7	2.3	3.0

Post-Developed Area per Sub-Basin

	Area
Sub-Basin	(Acres)
1710	8.29

Allowable Release Rates per Acre

Southwest Unconsolidated

Sub-Basin	1-year	2-year	5-year	10-year	25-year	50-year	100-year
1710	4.97	5.80	8.29	9.95	14.09	19.07	24.87
Total	4.97	5.80	8.29	9.95	14.09	19.07	24.87

	Subarea 01 and 03 Allowable Release	Subarea 02 Allowable Release	Offsite Release	Total Allowable	Proposed Release			
Storm Event	Rates*	Rates**	Rates***	Release Rates	Rates****			
(yr.)	(cfs.)	(cfs.)	(cfs.)	(cfs.)	(cfs.)			
1	16.70	4.97	10.74	32.42	10.17			
2	16.70	4.97	11.88	33.56	13.30			
5	16.70	4.97	13.65	35.33	16.62			
10	16.70	4.97	15.14	36.82	18.18			
25	16.70	4.97	17.23	38.91	20.12			
50	63.37	4.97	19.73	88.07	21.37			
100	81.46	24.87	23.25	129.59	22.54			

Table 7 - Total Allowable and Proposed Release Rates

*Based on a 25-year critical storm

**Based on a 50-year critical storm

***From "Offsite 01: Lucent Site", "Offsite 02: Blazer Tech Offices", "Offsite 03: Triangle Outparcel", and "Offsite 04: Cendant Site"; "Existing 36-inch outlet pipe" node in SSA

****From "EX00_Outlet" node in SSA

Storm	Wet Basins 01 and 02	Maximum W.S.E., T.O.B.	Storage Volume				
Event	Inflow Rates	= 867.00	Utilized				
(yr.)	(cfs.)	(feet)	(ac-ft)				
1	73.67	863.76	2.742				
2	91.18	863.95	3.078				
5	115.62	864.38	3.863				
10	135.13	864.86	4.778				
25	162.21	865.52	6.098				
50	185.00	866.04	7.209				
100	209.66	866.55	8.352				

Table 8 - BMP Performance Summary Wet Basins 01 and 02

Wet Basins 01 & 02 Detention Storage Utilized: 8.352 ac-ft (100-year storm event) Wet Basins 01 & 02 Detention Storage Provided: 9.388 ac-ft

	Bioretention	Maximum	Storage			
Storm	Basin 01	W.S.E., T.O.B.	Volume			
Event	Inflow Rates	= 867.14	Utilized			
(yr.)	(cfs.)	(feet)	(ac-ft)			
1	3.63	866.17	0.093			
2	4.45	866.26	0.103			
5	5.61	866.39	0.116			
10	6.56	866.47	0.126			
25	7.87	866.56	0.138			
50	8.95	866.71	0.154			
100	10.09	866.90	0.180			

Bioretention Basin 01

Bioretention Basin 01 Detention Storage Utilized: Bioretention Basin 01 Detention Storage Provided: 0.213 ac-ft

0.180 ac-ft (100-year storm event)

Bioretention Basin 02

	Bioretention	Maximum	Storage			
Storm	Basin 02	W.S.E., T.O.B.	Volume			
Event	Inflow Rates	= 867.17	Utilized			
(yr.)	(cfs.)	(feet)	(ac-ft)			
1	1.36	866.26	0.029			
2	1.66	866.31	0.031			
5	2.09	866.36	0.032			
10	2.45	866.42	0.033			
25	2.94	866.68	0.041			
50	3.34	866.90	0.049			
100	3.77	867.13	0.057			

Bioretention Basin 02 Detention Storage Utilized: Bioretention Basin 02 Detention Storage Provided: 0.059 ac-ft

0.057 ac-ft (100-year storm event)

	Bioretention	Maximum	Storage				
Storm	Basin 03	W.S.E., T.O.B.	Volume				
Event	Inflow Rates	= 867.10	Utilized				
(yr.)	(cfs.)	(feet)	(ac-ft)				
1	3.53	866.08	0.084				
2	4.33	866.18	0.093				
5	5.46	866.29	0.104				
10	6.38	866.37	0.111				
25	7.65	866.61	0.135				
50	8.71	866.82	0.158				
100	9.81	867.04	0.184				

Bioretention Basin 03

Bioretention Basin 03 Detention Storage Utilized: 0.184 ac-ft (100-year storm event) Bioretention Basin 03 Detention Storage Provided: 0.191 ac-ft

Bioretention Basin 04						
	Bioretention	Maximum	Storage			
Storm	Basin 04	W.S.E., T.O.B.	Volume			
Event	Inflow Rates	= 866.50	Utilized			
(yr.)	(cfs.)	(feet)	(ac-ft)			
1	2.11	865.34	0.053			
2	2.59	865.52	0.067			
5	3.26	865.62	0.074			
10	3.81	865.70	0.079			
25	4.57	865.93	0.098			
50	5.20	866.18	0.121			
100	5.86	866.46	0.147			

Bioretention Basin 04 Detention Storage Utilized: Bioretention Basin 04 Detention Storage Provided: 0.215 ac-ft

0.147 ac-ft (100-year storm event)

	Bioretention	Maximum	Storage				
Storm	Basin 05	W.S.E., T.O.B.	Volume				
Event	Inflow Rates	= 867.10	Utilized				
(yr.)	(cfs.)	(feet)	(ac-ft)				
1	3.75	866.13	0.096				
2	3.63	866.23	0.107				
5	5.80	866.35	0.120				
10	6.77	866.43	0.131				
25	8.13	866.54	0.144				
50	9.24	866.69	0.161				
100	10.41	866.87	0.188				

Bioretention Basin 05

Bioretention Basin 05 Detention Storage Utilized: Bioretention Basin 05 Detention Storage Provided:

0.188 ac-ft (100-year storm event) 0.221 ac-ft

	· · · · · · · · · · · · · · · · · · ·								
				Total 100-	Total 100-	Total			
		Total	Pervious	year Peak	year	Storage		Top of	
	Outlet	Tributary	Pavers	Inflow	proposed	Volume	Max.	Pavement	
	Structure	Area	Surface Area	Rates	release rates	Utilized	W.S.E.	Elevation	
Basin	Number	(Ac.)	(ft²)	(cfs.)	(cfs.)	(ac-ft)	(feet)	(feet)	
01-02	9	0.911	10,156	6.61	1.74	0.235	866.31	867.50	
03-04	13	0.924	10,009	6.74	0.41	0.282	866.86	867.50	

Pervious Pavers Basin 100-year Detention Summary

5.0 OUTLET DESIGN

The proposed outlet structures are designed to release runoff from the post-developed site at or below the allowable release rates calculated in Tables 5 for Subareas 01 and 03, and Table 8 for Subarea 02. The proposed outlet structures described below are preliminary and subject to change upon final design. The location of these structures can be seen on Exhibit 2 in Appendix E.

Proposed Outlet Structure 1 – Wet Basin 02

- Normal Pool 862.00 ft.
- Top of Bank 867.00 ft.
- 100-year 866.55 ft.
- 1st stage outlet (2) 5-inch orifices, cut into submerged riser pipe, invert at 862.00 ft.
- 2^{nd} stage outlet (2) 36-inch wide by 8-inch high window, invert at 863.20 ft.
- 3rd stage outlet Neenah R-4871 grate, top of casting at 865.00 ft.
- Tailwater Control 36-inch outlet pipe with 2.87% slope, invert at 862.00 ft.

<u>Proposed Outlet Structure – Wet Basin 01</u>

- Normal Pool 862.00 ft.
- Top of Bank 867.00 ft.

- 100-year 866.55 ft.
- 1st stage outlet Submerged 24-inch pipe with 0.00% slope, invert 859.00 ft.
- Tailwater Control Wet Basin 02

<u>Proposed Outlet Structure 8 – Bioretention Basin 01</u>

- Top of Soil Media 865.14 ft.
- Top of Bank 867.14 ft.
- 100-year 866.90 ft.
- 1st stage outlet Biomedia, invert at 865.14 ft.
- 2nd stage outlet Neenah R-4871 grate, top of casting 866.14 ft.
- Tailwater Control 18-inch outlet pipe with 0.25% slope, invert at 862.64 ft.

<u>Proposed Outlet Structure 5 – Bioretention Basin 02</u>

- Top of Soil Media 865.17 ft.
- Top of Bank 867.17 ft.
- 100-year 867.13 ft.
- 1st stage outlet Biomedia, invert at 865.17 ft.
- 2nd stage outlet Neenah R-4871 grate, top of casting 866.17 ft.
- Tailwater Control 12-inch orifice plate on the 18-inch outlet pipe with 0.25% slope, invert at 862.67 ft.

Proposed Outlet Structure 4 – Bioretention Basin 03

- Top of Soil Media 865.00 ft.
- Top of Bank 867.10 ft.
- 100-year 867.04 ft.
- 1st stage outlet Biomedia, invert at 865.00 ft.
- 2nd stage outlet Neenah R-4871 grate, top of casting 866.00 ft.
- Tailwater Control 18-inch outlet pipe with 0.25% slope, invert at 862.44 ft.

Proposed Outlet Structure 3 – Bioretention Basin 04

- Top of Soil Media 864.50 ft.
- Top of Bank 867.00 ft.
- 100-year 866.46 ft.
- 1st stage outlet Biomedia, invert at 864.50 ft.
- 2nd stage outlet Neenah R-4871 grate, top of casting 865.50 ft.
- Tailwater Control 18-inch outlet pipe with 0.25% slope, invert at 862.00 ft.

<u>Proposed Outlet Structure 12 – Bioretention Basin 05</u>

- Top of Soil Media 865.10 ft.
- Top of Bank 867.10 ft.
- 100-year 866.87 ft.
- 1st stage outlet Biomedia, invert at 865.10 ft.
- 2nd stage outlet Neenah R-4871 grate, top of casting 866.10 ft.
- Tailwater Control 18-inch outlet pipe with 0.25% slope, invert at 862.60 ft.

<u>Proposed Outlet Structure 9 – Pervious Pavers 01-02</u>

- Invert of Stone Storage 863.79 feet
- Top of Stone Storage 867.24 feet
- Lowest Pavement Elevation 867.50 feet
- 1st stage outlet (2) 1-inch orifices cut into caps of underdrains, invert 863.79 ft.
- 2nd stage outlet 4-foot long sharp crested weir, top of weir at 865.70 ft.
- Tailwater Control 15-inch outlet pipe with 0.37% slope, invert 863.79 ft.

Proposed Outlet Structure 13 – Pervious Pavers 03-04

- Invert of Stone Storage 863.79 feet
- Top of Stone Storage 867.24 feet
- Lowest Pavement Elevation 867.50 feet
- 1st stage outlet (2) 1-inch orifices cut into caps of underdrains, invert 863.79 ft.
- 2nd stage outlet 4-foot long sharp crested weir, top of weir at 866.80 ft.
- Tailwater Control 12-inch outlet pipe with 0.44% slope, invert 863.79 ft.

6.0 WATER QUALITY

The Ohio EPA requires that the water quality volume for wet basins and pervious pavers be detained for a period of 24 hours while releasing less than half of that volume in less than 8 hours. Water quality drawdown for each basin will be provided by the basin's 1st stage outlet listed in Section 5.0. Water quality calculations are provided in Appendix C.

	Tributary area	Water Quality Volume*	Water Quality Elevation
Basin Identifier	(acres)	(ac-ft)	(feet)
Wet Basins 01 & 02	55.502	1.354	862.92
Pervious Pavers 01-02	0.911	0.042	864.25
Pervious Pavers 03-04	0.924	0.042	864.26

Table 9 - Water Quality Calculations

*75% of WQv for Wet Basins

To meet water quality requirements, the surface area required for Bioretention Basins is designed to have 1 foot of head on the biomedia. Table 10 summarizes the water quality calculations for the Bioretention Basins

	100% Water			
	Quality	Water Quality	Required	Provided
Bioretention	Volume	Elevation	Biomedia Area	Biomedia Area
Basin	(ac-ft)	(feet)	(sq-ft)	(sq-ft)
01	0.063	865.88	2726	3206
02	0.024	866.11	1019	999
03	0.062	865.83	2649	2836
04	0.037	865.11	1584	2399
05	0.066	865.85	2814	3265

Table 10 - Bioretention Basin Summary Data

7.0 SEDIMENT BASIN CALCULATIONS

The Ohio EPA requires that during construction a site must provide a means by which to control the sediment laden runoff from the construction site. For each acre of drainage area that is tributary to the sediment basin, a drawdown volume of 67 yd³ is provided above the normal pool elevation. The basin will additionally provide more than the required 37 yd³ of settling volume below the normal pool elevation for each acre of disturbed area tributary to the basin.

Wet Basins 01 and 02 will be used as sediment basins during construction. Sediment Basin Calculations are described in Table 11 below and provided within Appendix C.

					Required	Provided	
			Required		Sediment	Sediment	
	Tributary	Disturbed	Dewatering	Dewatering	Storage	Storage	Orifice
	area	Area	Volume	Elevation	Volume	Volume	Size
Basin	(acres)	(acres)	(ac-ft)	(feet)	(ac-ft)	(ac-ft)	(inches)
01 & 02	63.79	34.45	2.65	863.71	0.79	2.69	6"

 Table 11 - Sediment Basin Calculations

8.0 CONCLUSION

The proposed stormwater management plan for the Dublin Smart Parking Lot meets all requirements for detention and water quality as set forth by the City of Dublin and the Ohio EPA.

APPENDIX C:

Exhibits

	_	_			•
====================================					
Ω □ □ □ □ SIM Storm Sewer Ω □ □ □ □ SIM Storm Sewer SAN □ □ □ □ SAN Sanitary Sewer					
EDB EDB Electric Duct Bank					
Image: String of the string					
FO Telecomm Duct Bank	SNO				
	VISIC				
Existing Impervious Area	RE				
Proposed Impervious Area					
		IOLIAI			
Site Information		ESCR			
Total Site Area: 1.683 acres					
Impervious Area Prop Building = 12,571 sf	ļ				
Prop Parking Lot/Drive Apron = 20,415 sf		MARK			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-			
TOTAL = 52,664 sf (1.21 acres)					
Pervicus Area: 474 acres					
Existing Impervious: 258 acres					
Proposed Impervious: .951 acres					
			\sim		
	0		K		
FWS E	V. OH)E]	T	
H-DWS+			II	IBI	
	N CO		AC	HX	
		IBIT	× E	JS E	
	FRAI	HXE		lOI	
			RI	IRV	
	DUF		ΓB	APE	
	TO Y		H		
	CIJ		J		
	Ĩ		1, Inc. Intists	2648	
		2	い い い い い に の し し い い し し い い い い い い い い い い い い い	888.775	
			oleton lanner	oll Free:	
			Hami	uht.co	
		\geq	chwart Surve	775.450 E	
	T	τĬ	ns, Mer neers	le: 614	
	DA	ГЕ			
	N	Aarcl	h 25, 20	024	
	~-				
	SCA	аlе	_		
		1"	' = 20'		
	JOI	3 NO			
GRAPHIC SCALE		202	3-1033	,	
		202	J-1033	,	
1 inch = 20 feet	SHI	EET			
		1	/1		
	i i		., .		4