

CERTIFICATE OF PLAN APPROVAL

This is not a Building Permit. It is a record of our review of documents submitted with your application for a Building Permit.

26 October 2020
Ms. Brenda Kinser
O'Neil Tents
895 W. Walnut Street
Canal Winchester, OH 43110
(614) 837-6352 bjk@oneiltents.com

Re:	Tucci's Patio Winter Tent
Address:	35 N. High Street (43017)
Application No.:	TSTR-20-01723(1)

Dear Ms. Kinser:
The construction documents dated 25 September 2020 have been reviewed for compliance with the provisions of the 2017 Ohio Building Code (August 2018 Edition). The review was based upon the following criteria:

Primary Use Group:	A-2
Area/Occupant Load:	
	1,849 SF / Chairs @ Tables shown = 62 Seats* *Reference all current Governor of Ohio's "Responsible RestartOhio" regulations and guidance for social distancing requirements
Construction Type:	
Special Stipulations:	
IIB	
1. Set up 1 November 2020; Take down by 29 April 2021(<180	
days) or until the end of the Executive Order, whichever is first.	
2. This approval is for the 43'x43' main tent only.	

The construction documents were prepared by Robert V. Nangia, Ohio registered engineer \#E-73309 and Jeffery R. Bolchalk, Ohio registered engineer \#E-70796 to comply with
requirements of the OBC Section 107.4.3 and have been reviewed, therefore, in accord with that Section.

OBC 107.5.1 Approval of construction documents. . . . When the construction documents have been determined to conform to the applicable provisions of the rules of the Board, the building official shall endorse or stamp such plans as approved and issue the certificate of plan approval in accordance with section 105.5.

Item 1 THE CONSTRUCTION DOCUMENTS ARE APPROVED

Item 2 The qualification of Geotechnical Consultants, Inc. as the Special Inspection company for all foundation and structural work has been reviewed and accepted by the building official.
1704.2.4 Report requirement. Special inspectors shall keep records of inspections. The special inspectors shall submit reports of special inspections and tests to the building official and to the registered design professional in responsible charge. Reports shall indicate that work inspected or tested was or was not completed in conformance to approved construction documents. Discrepancies shall be brought to the immediate attention of the contractor for correction. If they are not corrected, the discrepancies shall be brought to the attention of the building official and to the registered design professional in responsible charge prior to the completion of that phase of the work. A final report documenting required special inspections and tests, and correction of any discrepancies noted in the inspections or tests, shall be submitted at a point in time agreed upon prior to the start of work by the owner or the owner's representative to the building official prior to the issuance of a certificate of occupancy.

This APPROVAL is for the issuance of a general building permit only. Separate permits and fees for plumbing, mechanical, sprinkler, electric and low-voltage must be obtained from the Dublin Building Standards Division prior to the start of any work in these generally subcontracted areas.

The following items are required for code compliance, but are not necessarily covered in detail in the construction documents. This list is a reminder to the design professional and contractors of issues, which are to be satisfactorily dealt with in the field:

Item A Review and Approval of Plumbing Drawings and inspection of Plumbing installations are performed by the Franklin County Board of Health
Item B OBC 106.3 Amended construction documents. If substantive changes to the building are contemplated after first document submission, or during construction, those changes must be submitted to the building official for review and approval prior to those changes being executed. The building official may waive this requirement in the instance of an emergency repair, or similar instance.

CERTIFICATE OF PLAN APPROVAL - cont.

Item C OBC 107.5.2 Posting. The certificate of plan approval shall be posted in a conspicuous location on the site. The owner and the contractor shall preserve and keep the certificate posted until the final inspections are complete.
Item D OBC 107.7 Approved construction document sets. One set of construction documents shall be kept by the building official. The other set(s) shall be returned to the applicant, kept at the work site along with manufacturers' installation instructions and product information, and shall be available for use by the inspector.
Item E OBC 108.1 General. . . . Construction or work for which an approval is required shall be subject to inspection by the building official. It shall be the duty of the owner or the owner's duly authorized representative to notify the building department when work is ready for inspection. Access to and means for inspection of such work shall be provided for any inspections that are required by this code.
It shall be the duty of the owner or the owner's authorized representative to cause the work to remain accessible and exposed for inspection purposes . . . until the work has been inspected to verify compliance with the approved construction documents. . .
This includes firestopping and draftstopping, mechanical work; piping, ducts and systems, structural members and connections, and electrical work (Chapter 27 OBC). All systems and elements covered by code are to be inspected and approved before being covered.
Subsequent work is allowed to proceed only to the point of the next required inspection.
Item F OBC 804.3 Testing and Identification Interior floor finish and floor covering materials shall be tested by an approved agency in accordance with NFPA 253 and identified by a hang tag or other suitable method so as to identify the manufacturer or supplier and style, and shall indicate the interior floor finish or floor covering classification according to Section 804.2. Carpet-type floor coverings shall be tested as proposed for use, including underlayment. Test reports confirming the information provided in the manufacturer's product identification shall be furnished to the building official upon request.
Item G OBC 1101.2 Design. Buildings and facilities shall be designed and constructed to be accessible in accordance with this code and ICC 117.1 as amended in Section 1112 of this chapter.
Item H All electrical will comply with the requirements of Article 27 OBC and the National Electrical Code, NFPA 70, OBC approved.

Reviewed and Signed,
J.E. Rusanawsky

Janet E. Rusanowsky, Architect
Commercial Plans Examiner
(614) 4104612 jrusanowsky@dublin.oh.us

Brad fagrell
 Brad Fagrell, P.E. 0

Director of Building Standards/CBO

CERTIFICATE OF PLAN APPROVAL - cont.
26 October 2020
Page 4 of 4

Tucci's Patio Winter Tent Application No. TSTR-20-01723(1)

Owner or Owner's Representative
Date

Print Name and Title as Signed

EXECUTIVE ORDER

TEMPORARY OUTDOOR PATIO EXPANSION

Pursuant to Chapter 36 of the Dublin Codified Ordinances and the City Manager's Declaration of a State of Emergency issued on March 17, 2020, the enforcement of certain provisions of Chapter 153 regarding the City's Outdoor Dining and Seating regulations are temporarily amended as follows:

1. A business may temporarily expand their outdoor dining and eating area outside of the currently designated/approved location to allow for increased social distancing related to COVID-19. This will be permitted with the following stipulations:
a. The expansion will be permitted in conjunction with an existing and permitted restaurant use;
b. A Certificate of Zoning Plan Approval will be required at no cost;
c. Relief from specific zoning site requirements, design details, and parking requirements will be applied on a case-by-case basis.
d. Outdoor speakers and music will not be permitted in the expanded areas.
e. Outdoor dining and seating area materials should complement the existing materials.
f. Expanded areas will be located to be sensitive to and take into consideration surrounding properties, including residential areas.
g. Alcohol may only be served in the expanded area when permitted by the Ohio Division of Liquor Control.
h. Staff will review the request for the expansion in conjunction with the direction and guidance of FCPH.
2. A Certificate of Zoning Plan Approval shall be required in order to permit Outdoor Dining and Seating expansion. The following information will be required to be submitted with the CZPA form at no charge:

- Detailed, dimensioned site plan showing the location on the site with adherence to ensuring safe access and be served by adequate parking;
- Sensitively located and to show adherence to the standards of the community and minimizing impact on nearby residential uses to the maximum extent possible;
- Design specifications associated with the proposed outdoor dining and seating expansion shall be provided: chairs and tables, umbrellas, etc.
- Detailed narrative noting the specific use proposed and the scope of the intended use, particularly highlighting the required need as a result of COVID-19;
- Signed acknowledgment that the time period of validity is limited to the City's designation of a State of Emergency, or any other time limitation otherwise mandated by the City Manager.

The intent of this Order is to support and promote increased social distancing and support local businesses during this difficult economic time. These temporary amendments will immediately cease upon termination of the State of Emergency or as otherwise mandated by the City Manager and the expanded outdoor dining and seating will be required to be removed and site restored.

EXECUTIVE ORDER

PORTABLE STRUCTURES AND TEMPORARY USES

Pursuant to Chapter 36 of the Dublin Codified Ordinances and the City Manager's Declaration of a State of Emergency issued on March 17, 2020, the enforcement of certain provisions of Chapter 153 regarding the City's Portable Structures and Temporary Uses are temporarily amended as below:

1. Section 153.097(B)(3) - Portable Nonresidential Structures. A business may temporarily erect a building(s) or similar structure(s) designed for occupation which is not placed on a permanent foundation to allow for testing, waiting or staging related to COVID-19.
The definition shall include construction trailers, portable classrooms, tents, trailers and other similar structures.
2. Section 153.097(C) - Permit process. A Certificate of Zoning Plan Approval shall be required to permit these designated portable structures and temporary uses. The following information will be required to be submitted with the CZPA form at no charge:

- Detailed, dimensioned site plan showing location on the site with consideration of the required setbacks and ensuring safe access and be served by adequate parking;
- Sensitively located to show adherence to the standards of the community and minimizing impact on nearby residential uses to the maximum extent possible;
- Detailed and dimensioned elevations or design specifications of the proposed temporary structure;
- Detailed in a narrative noting the specific use proposed and the scope of the intended use, particularly highlighting the required need as a result of COVID-19;
- Signed acknowledgment that the time period of validity is limited to the City's designation of a State of Emergency, or any other time limitation otherwise mandated by the City Manager.

The intent of this Order is to support and promote healthy practices during this difficult economic time. These temporary amendments will immediately cease upon termination of the State of Emergency or as otherwise mandated by the City Manager and the portable structures and temporary uses will be required to be removed and the site restored.

Project Name: Tucci's
Project Number: 2014.87

HTS tentic

Gable Style Single-level Structure

$13 m \times 13 m-3.2 m$ Eave

Structural evaluation of the gable style structure in accordance with IBC 2015, and ASCE7-10

Designed for wind velocity 115 mph basic wind speed, 3 -second gust, Exposure B with factors applied per ASCE37-02 for nominal wind design pressures

Risk Category = 'Il'
Ground snow $=20$ psf
Enclosed Structure

The professional engineer seal on this cover page refers to the calculation sheets contained within this document and to any Appendix or Table sheets that support this document. Any other drawings and documents may require a separate seal for coverage not provided here.

Certification of this document only shows that the Professional Engineer of that particular state is in agreement with the report's contents. It does not, however, imply that the structure is generally suitable for use within that state, or that every installation is covered by this report.

The information and illustrations contained within this document remain the sole property of HTS tentIQ and are to be treated as confidential.
The professional engineer's seal, affixed on this document, signifies a responsibility for the structural adequacy of the design of the structure in the completed project. The content contained within this document does not encompass means, methods and safety of erection.

All data, designs, technical representations, engineering calculations and illustrations whether written or implied may not be reproduced in whole or in part nor distributed, used in manufacturing, design or display without the express written consent of HTS tentIQ.

Retention of this document shall constitute acceptance of these terms and conditions.

This page intentionally left blank

Table of Contents

1. Summary and Recommendations
2. Determination of loads

Dead Load
Live load
Roof Live load
Wind load
3. Load Combinations
4. Main Profile Designs
5. Splice Design
6. Baseplage Design
7. Purlin Design
8. Miscellaneous

Appendix A - Sketches
Appendix B - Computer Model INPUT
Appendix C - Computer Model OUTPUT

Revision Log

$\frac{\text { Rev }}{0} \quad \frac{\text { Rev. Date }}{31 \text { Aug } 20} \quad \frac{\text { Description }}{- \text { Original Issue }}$

01-Introduction.xmcd	3 of 6

This page intentionally left blank

1. Summary and Recommendations

This document, based on technical background information as provided by HTS tentIQ, covers the structural evaluation of the aluminum frame style structure in accordance with U.S. Building Code requirements. The specifications outlined in the Structural Engineering Institute / American Society of Civil Engineers (SEI/ASCE 7) "Minimum Design Loads for Buildings and Other Structures" were followed in determining the integrity of the structure. This document is intended to serve as a basis for the acceptability of this temporary, stand-alone, enclosed structure under standard design wind loads at varying levels of exposure (terrain and wind velocities).
Lightweight Design Inc. compiled this document based on the existing frame tent system with reference to the applicable building codes in the U.S. This report includes the load cases and combinations used in the analysis and gives an indication as to the wind exposure for which the structure is suitable. Certification of this document only shows that the Professional Engineer of that particular state is in agreement with the report's contents. It does not, however, imply that the structure is generally suitable for use within that state, or that every installation is covered by this report.

Computer-aided structural frame analysis were involved in the course of the investigation. Different load combinations were considered to identify the critical aspects of the design. Member and detail checks were established to derive the conclusions for the entire report.

As such, we have arrived at the following conclusions and recommendations:

1.1 Wind Speed Rating

- Wind Speed
- Exposure
- Construction Period
- Velocity Pressure

115 mph, 3-second gust
Category B
Period = "More than 5 years"
$\mathrm{q}_{\mathrm{h}}=20.16 \mathrm{psf}$ at mean roof height, $\mathrm{h}=14.19 \mathrm{ft}$

Exposure Categories (IBC)

1609.4.3 Exposure categories. An exposure category shall be determined in accordance with the following:
Exposure B. Exposure B shall apply where the ground surface roughness condition, as defined by Surface Roughness B, prevails in the upwind direction for a distance of at least 2,600 feet (792 m) or 20 times the height of the building, whichever is greater.
Exception: For buildings whose mean roof height is less than or equal to 30 feet (9144 mm), the upwind distance is permitted to be reduced to 1,500 feet (457 m).
Exposure C. Exposure C shall apply for all cases where Exposures B or D do not apply.
Exposure D. Exposure D shall apply where the ground surface roughness, as defined by Surface Roughness D, prevails in the upwind direction for a distance of at least 5,000 feet (1524 m) or 20 times the height of the building, whichever is greater. Exposure D shall extend inland from the shoreline for a distance of 600 feet $(183 \mathrm{~m})$ or 20 times the height of the building, whichever is greater.

Surface Roughness Categories (IBC)

1609.4.2 Surface roughness categories. Aground surface roughness within each 45 -degree (0.79 rad) sector shall be determined for a distance upwind of the site as defined in Section 1609.4.3 from the categories defined below, for the purpose of assigning an exposure category as defined in Section 1609.4.3.

Surface Roughness B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger.
Surface Roughness C. Open terrain with scattered obstructions having heights generally less than 30 feet (9144 mm). This category includes flat open country, grasslands, and all water surfaces in hurricane-prone regions.
Surface Roughness D. Flat, unobstructed areas and water surfaces outside hurricane-prone regions. This category includes smooth mud flats, salt flats and unbroken ice.

1.2 Hanging Dead Loads

The electrical and mechanical fixtures (lighting, HVAC, suspended items, etc.) totaling 500 lbs per frame and suspended symmetrically on the structure are accounted for. These hanging loads have been assumed to be 125 lbf at the center of each rafter and 250 lbf at the ridge of each rafter for this analysis.

1.3 Live Loads (Snow, Floor, Roof)

Ground snow loading for the area is 20 psf.
Live loads loads produced by the use and occupancy of the building are found on Table 1607.1. n the case of this structure, there are no additional live loads.
Based on performance and function of this building style, only short duration of the roof live load is expected on the fabric roof of the structure. If repairs are needed, usually one worker with a light equipment would suffice. Roof Live Load is not considered for this evaluation.

1.4 Base Reactions

The maximum reactions at the foundations/supports due to service and combined loads reactions and exposure category are given in the Appendix C

NOTE: Foundations, by others, are required to support column loads. A foundations engineer must verify ground conditions on a site-by-site basis and provide appropriate bearing plate sizes to accommodate column loads:

1.5 Installation Requirements

It is understood that the responsibility of proper installation according to the plans rests upon the installation contractor. This includes, but is not limited to, ensuring the following:

- that the cables are always held taut,
- that the fabric is stretched tight enough to prevent the development of pockets and to maintain the prescribed roof gradient,
- that purlins are installed securely against rafters to resist calculated loads,
- that base plates are secured to their foundations using anchors. The manufacturer provides a base plate and anchoring plan for the structure as a base starting point for average soil conditions. It is the installers responsibility to ensure that the anchorage provided will resist the reaction loads as indicated in the tables found in this document.

2a. Determination of Loads

Dead Load :

The structure dead loads consist of the self weight of the structure's components with addition of uniform distributed loads for fabric roofing, side wall materials, and minor components. Various calculated weights are shown below for reference and use in the static computer model analysis.

The structure is designed to support the loads shown in this calculations. It may, or may not, be capable of supporting additional collateral loads. The owner of the structure shall not hand, or otherwise affix, additional loads to this structure without a review by an engineer qualified to make said review. Additionally, prior to adding load to this structure, the owner shall get a written confirmation by the qualified engineer as to the magnitude and location of the load, or loads, being applied.

The electrical and mechanical fixtures (lighting, HVAC, suspended items, etc.) totaling 500 lbs per frame and suspended symmetrically on the structure are accounted for. These hanging loads have been assumed to be 250 lbf at the peak of the structure and 125 midway up each rafter for this analysis.

Load hanging at peak :
Rafter load hanging midway between peak and eave :

$$
\begin{aligned}
& \mathrm{P}_{\text {peak }}=250 \cdot \mathrm{lbf} \\
& \mathrm{P}_{\text {rafter }}=125 \cdot \mathrm{lbf}
\end{aligned}
$$

Live Load :

Live loads loads produced by the use and occupancy of the building are found on Table 1607.1. In the case of this structure, there are no additional live loads.

Roof Live Load :

Live loads loads produced by the use and occupancy of the building are found on Table 1607.1. In the case of this structure, the mezzanine can be described as having a uniformly distributed load for walkways and elevated platforms. The minimum floor live load used in this evaluation is 0 psf .

02b. Determination of Loads-Snow Loads Design Parameters

Ground Snow Load
Terrain Category:
Exposure Factor :
$\mathrm{p}_{\mathrm{g}}=20 \cdot \mathrm{psf}$
Exposure $=$ "B"
$\mathrm{C}_{\mathrm{e}}=0.9$
[Fig. 7-1, Table 7-1]
[Section 26.7]
[Table 7-2]

Description of exposure type $=$ "Roof exposure condition $=$ Fully Exposed"
Thermal Factor :

$$
C_{t}=1
$$

[Table 7-3]
Description of thermal condition $=$ "Thermal Condition $=$ All structures except those as indicated in Table 7-3"

$$
\text { Building Risk Category: } \quad \text { Cat }=\text { "II" }
$$

[Table 1.5-1]
Occupancy of Building = "All building and other structure except those listed in Risk Categories I, III, and IV"
Importance Factor: $\quad \mathrm{I}_{\mathrm{s}}=1.0$
[Table 1.5-2]

Flat Roof Snow Load:

$\mathrm{p}_{\mathrm{f}}=0.7 \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{s}} \cdot \mathrm{p}_{\mathrm{g}}$

$$
\begin{equation*}
\mathrm{p}_{\mathrm{f}}=12.6 \cdot \mathrm{psf} \tag{Eq.7.3-1}
\end{equation*}
$$

Minimum Snow Load for Low-Slope Roofs :

Per ASCE 7-10 Section 7.3.4, minimum roof snow load, p_{m}, shall only apply to monoslope, hip and gable roofs with slopes less than 15°, and to curved roofs where the vertical angle from the eaves to the crown is less than 10°. This minimum roof snow load is a separate uniform load case. It need not be used in determining or in combination with drift, sliding, unbalanced, or partial loads.
Check for Minimum Snow Load = "minimum values for low-slope roof need not to be considered "
Sloped Roof Snow Load
Roof Slope Factor :

$$
\begin{align*}
& \mathrm{C}_{\mathrm{s}}=0.80 \\
& \mathrm{p}_{\mathrm{s}}=\mathrm{C}_{\mathrm{s}} \cdot \mathrm{p}_{\mathrm{f}} \tag{Eq.7.4-1}\\
& \mathrm{p}_{\mathrm{s}}=10.11 \cdot \mathrm{psf}
\end{align*}
$$

[Figure 7-2a]
Sloped Roof Load :

Rain-on-Snow Surcharge Load:
Per ASCE 7-10 Section 7.10, for locations where p_{g} is 20 psfor less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall include a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

Rain-on-Snow Surcharge Load = "surchage load need not be applied"
[Section 7.10]
Design Balanced Snow Load :

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{s}}=10.11 \cdot \mathrm{psf} \quad \mathrm{~S}_{0}=\mathrm{p}_{\mathrm{s}} \cdot \mathrm{~L}_{\text {bay }} \\
& \mathrm{S}_{0}=37.05 \cdot \mathrm{pli}
\end{aligned}
$$

Design Unbalanced Snow Load Design Check:

Per ASCE 7-10 Section 7.6.1, for hip and gable roofs with a slope exceeding 7 on $12\left(30.2^{\circ}\right)$ or with a slope less than $2.38^{\circ}(1 / 2$ on 12$)$ unbalanced snow loads are not required to be applied.
$\theta_{\text {roof }}=17.86 \cdot \mathrm{deg}$
[Section 7.6.1]
Check unbalanced load requirement $=$ "all criteria met; must consider unbalanced loads"

HTS tentic

Design Unbalanced Snow Load :

$$
\mathrm{S}=3.1
$$

$\gamma_{\text {snow }}=16.6 \cdot \mathrm{pcf}$
$h_{d}=1.3 \cdot \mathrm{ft}$
$\mathrm{W}=21.5 \cdot \mathrm{ft}$
$\mathrm{S}_{2 . \text { windward }}=3.03 \cdot \mathrm{psf}$
$\mathrm{d}_{1}=6.1 \cdot \mathrm{ft}$
$\mathrm{S}_{2 . \text { leeward }}=\binom{22.34}{10.11} \cdot \mathrm{psf}$
[Section 7.1]
[Eq. 7.7-1]
[Figure 7-9]
[Figure 7-5]

Unbalanced W $<20 \mathrm{ft}$ with roof rafter system

ASCE 7-10 FIGURE 7-10 Balanced and Unbalanced Snow Loads for Hip and Gable Roofs.

Risk Category:
Cat = "II"
[Table 1.5-1]
Occupancy of Building = "All building and other structure except those listed in Risk Categories I, III, and IV"

Basic Wind Speed:
Wind Directionality Factor:
Exposure Category:
Topographic Factor:
Gust Effect Factor:
Enclosure Classification:
$\mathrm{V}=115 \cdot \mathrm{mph}$
$\mathrm{K}_{\mathrm{d}}=0.85$
Exposure = "B"
$\mathrm{K}_{\mathrm{zt}}=1$
$\mathrm{G}=0.85$
Enclosure $=$ "Enclosed"
[Section 26.5.1]
[Table 26.6-1]
[Section 26.7]
[Section 26.8.2]
[Section 26.9.1]
[Section 26.12]

Wind Velocity Reduction for Temporary Structure per ASCE37-02

Envelope Procedure for Low Rise Buildings -ASCE 7-10 Chapter 28

Per ASCE 7-10 Section 26.2, buildings with mean roof height h less than or equal to 60 ft , and with mean roof height h dose not exceed least horizontal dimension are considered as low-rise building.

Check Low Rise Criteria = "both low-rise conditions are satisfied"
Per ASCE 7-10 Section 28.1.4, no reduction to the velocity pressure is taken due to apparent shielding.
Velocity Pressure :

*Note: z shall not be taken less than 30 feet in exposure B.

$$
\mathrm{z}_{\mathrm{g}}=1200 \cdot \mathrm{ft}
$$

[Table 26.9.1]
$\mathrm{K}_{\mathrm{z}}=0.7$
$\mathrm{K}_{\mathrm{h}}=0.7$
$\mathrm{q}_{\mathrm{z}}=20.16 \cdot \mathrm{psf} \quad$ velocity pressure evaluated at building height, z
$\mathrm{q}_{\mathrm{h}}=20.16 \cdot \mathrm{psf}$
velocity pressure exposure coefficient evaluated at peak height ($\mathrm{z}=17.66 \mathrm{ft}$)
velocity pressure exposure coefficient evaluated at mean roof height ($\mathrm{h}=14.19 \mathrm{ft}$)
velocity pressure evaluated at mean roof height, h

Design Wind Pressure

$$
\mathrm{p}=\mathrm{q}_{\mathrm{h}} \cdot\left[\left(\mathrm{GC}_{\mathrm{pf}}\right)-\left(\mathrm{GC}_{\mathrm{pi}}\right)\right]
$$

[Equation 28.4-1]
External Pressure Coefficients $\left(\mathrm{GC}_{\mathrm{pf}}\right)$

Load Case A
ASCE 7-10 FIGURE 28.4-1 External Pressure Coefficients ($\mathbf{G C}_{\text {pf }}$)
Transverse Direction (Load Case A)

$\mathrm{GC}_{\text {pf. }}=$	"1"	"2"	"3"	"4"	"1E"	"2E"	"3E"	"4E"	$\mathrm{a}=4.3 \cdot \mathrm{ft}$
	0.51	-0.69	-0.46	-0.41	0.77	-1.07	-0.67	-0.61	
	(interpolated to the roof slope at: $\theta_{\text {roof }}=17.86 \mathrm{deg}$)								

Longitudinal Direction (Load Case B)

GC $_{\text {pf.B }}=$| "1" | "2" | "3" | "4" | "5" | "6" | "1E" | "2E" | "3E" | "4E" | "5E" | "6E" |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -0.45 | -0.69 | -0.37 | -0.45 | 0.4 | -0.29 | -0.48 | -1.07 | -0.53 | -0.48 | 0.61 | -0.43 |

Application of Pressures on Building Surfaces 2 and 3
Per note 8 in ASCE 7-10 Fig. 28.4-1, the roof pressure coefficient (GCpf), when negative in Zone 2 and 2E, shall be applied in Zone 2/2E for a distance from the edge of the roof equal to 0.5^{*} horizontal dimension of the building parallel to the direction of the MWFRS being designed or 2.5^{*} the eave height at the windward wall, whichever is less; the remainder of Zone $2 / 2 \mathrm{E}$ extending to the ridge line shall use the pressure coefficient (GCpf) for Zone 3/3E.

Zone $2 / 2 \mathrm{E}$ Distance $_{\text {CaseA }}=21.5 \cdot \mathrm{ft}$
Zone 2/2E Distance ${ }_{\text {CaseB }}=22 \cdot \mathrm{ft}$
Internal Pressure Coefficients ($\mathrm{GC}_{\mathrm{p} i}$)

$\mathrm{GC}_{\mathrm{pi}}=$| "Overpressure" | 0.18 |
| ---: | ---: |
| "Underpressure" | -0.18 |

[Table 26.11-1]

Wind at Transverse Direction (Load Case A)

$\mathrm{p}_{\mathrm{A}}=$| "1" | "2" | "3" | "4" | "1E" | "2E" | "3E" | "4E" |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6.68 | -17.54 | -12.99 | -11.90 | 11.95 | -25.20 | -17.08 | -15.93 |
| 13.94 | -10.28 | -5.73 | -4.64 | 19.21 | -17.94 | -9.82 | -8.67 |
| top line = overpressure, bottom line $=$ underpressure | | | | | | | |

*top line $=$ overpressure, bottom line $=$ underpressure
Wind at Longitudinal Direction (Load Case B)

$p_{B}=$| "1" | "2" | "3" | "4" | "5" | "6" | "1E" | "2E" | "3E" | "4E" | "5E" | "6E" |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -12.7 | -17.54 | -11.09 | -12.7 | 4.44 | -9.48 | -13.31 | -25.2 | -14.31 | -13.31 | 8.67 | -12.3 |
| -5.44 | -10.28 | -3.83 | -5.44 | 11.69 | -2.22 | -6.05 | -17.94 | -7.06 | -6.05 | 15.93 | -5.04 |

*top line $=$ overpressure, bottom line $=$ underpressure
Design Wind Pressure on Gable

$\mathrm{p}_{\mathrm{g}}=$| "5" | "6" | "5E" | "6E" |
| ---: | ---: | ---: | ---: |
| 4.44 | -9.48 | 8.67 | -12.3 |
| 11.69 | -2.22 | 15.93 | -5.04 |

Minimum Design Wind Loads

Per ASCE 7-10 Section 28.4.4, the wind load to be used in the design of the MWFRS for an enclosed or partially enclosed building shall not be less than 16 psf multiplied by the wall area of the building and 8 psf multiplied by the roof area of the building projected onto a vertical plane normal to the assumed wind direction.

3. LRFD Load Combinations :

ASCE 7-10 Section 2.2 : SYMBOLS AND NOTATION
D = dead load
$\mathrm{Di}=$ weight of ice
E = earthquake load
$\mathrm{F}=$ load due to fluids with well-defined pressures and maximum heights
Fa = flood load
$\mathrm{H}=$ load due to lateral earth pressure, ground water pressure, or pressure of bulk materials
L = live load
$L r=$ roof live load
$\mathrm{R}=$ rain load
S = snow load
$\mathrm{T}=$ self-straining force
W = wind load
$\mathrm{Wi}=$ wind-on-ice determined in accordance with Chapter 10

ASCE Section 2.3 : COMBINING FACTORED LOADS USING STRENGTH DESIGN

Section 2.3.2 : Basic Combinations. Structures, components, and foundations shall be designed so that their design strength equals or exceeds the effects of the factored loads in the following combinations:
1.1.4D
2. 1.2D + 1.6L + 0.5(Lr or Sor R)
3. 1.2D + 1.6(Lr or S or $R)+(L$ or $0.5 W)$
4. $1.2 \mathrm{D}+1.0 \mathrm{~W}+\mathrm{L}+0.5$ (Lror S or R)
5. $1.2 \mathrm{D}+1.0 \mathrm{E}+\mathrm{L}+0.2 \mathrm{~S}$
6. $0.9 \mathrm{D}+1.0 \mathrm{~W}$
7.0.9D + 1.0E

NOTE:

1. As it is unlikely that this structure will experience service loads F and H, they are not shown in the combinations here for clarity.

Exceptions :

1. The load factor on L in combinations 3,4 , and 5 is permitted to equal 0.5 for all occupancies in which L_{o} in Table 4-1 is less than or equal to 100 psf, with the exception of areas occupied as places of public assembly.
2. In combinations 2,4 , and 5 , the companion load S shall be taken as either the flat roof snow load $\left(p_{f}\right)$ or the sloped roof snow load (p_{s})
3. In IBC 1605.2, S in combination 5 shall be 0.7 for roof configurations (such as saw tooth) that do not shed snow off the structure.
Section 2.3.3 : Load Combinations Including Flood Load. When a structure is located in a flood zone (Section 5.3.1), the following load combinations shall be considered in addition to the basic combinations in Section 2.3.2:
4. In V-Zones or Coastal A-Zones, 1.0 W in combinations 4 and 6 shall be replaced by $1.0 \mathrm{~W}+2.0 \mathrm{Fa}$.
5. In noncoastal A-Zones, 1.0 W in combinations 4 and 6 shall be replaced by $0.5 \mathrm{~W}+1.0 \mathrm{Fa}$.

Section 2.3.4 : Load Combinations Including Atmospheric Ice Loads. When a structure is subjected to atmospheric ice and wind-on-ice loads, the following load combinations shall be considered:

1. $0.5(\mathrm{Lr}$ or S or R) in combinatoin 2 shall be replaced by $0.2 \mathrm{Di}+0.5 \mathrm{~S}$.
2. $1.0 \mathrm{~W}+0.5(\mathrm{Lr}$ or S or R) in combination 4 shall be replaced by $\mathrm{Di}+\mathrm{Wi}+0.5 \mathrm{~S}$.
3. 1.0 W in combination 6 shall be replaced by $\mathrm{Di}+\mathrm{Wi}$.

Symbols as used in calculations

D_{1}	$=$ dead load;
L_{f}	$=$ live load;
L_{r}	$=$ roof live load;
S_{1}	$=$ balanced snow
S_{2}	$=$ unbalanced snow

W_{1} = lateral wind $+x$ (perpendicular to ridge line with overpressure)
W_{2} = lateral wind $+x$ (perpendicular to ridge line with overpressure)
$W_{3}=$ longitudinal wind $+z$ (parallel to ridge line with underrpressure)
$W_{4}=$ longitudinal wind +z (parallel to ridge line with underpressure)
$W_{5}=$ lateral wind -x (perpendicular to ridge line with overpressure)
$W_{6}=$ lateral wind $-x$ (perpendicular to ridge line with overpressure)
$W_{7}=$ longitudinal wind $-z$ (parallel to ridge line with underrpressure)
$W_{8}=$ longitudinal wind $-z$ (parallel to ridge line with underpressure)
$W_{m}=$ minimum design wind load

Combinations as applied in calculations :

1.01	$1.4 \mathrm{D}_{1}$
2.01	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~L}_{\mathrm{r}}$
. 02	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{1}$
. 03	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{2}$
3.01	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{r}}+1.0 \mathrm{~L}_{\mathrm{f}}$
. 02	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{r}}+0.5 \mathrm{~W}_{1}$
. 03	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{r}}+0.5 \mathrm{~W}_{2}$
. 04	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{r}}+0.5 \mathrm{~W}_{3}$
. 05	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{r}}+0.5 \mathrm{~W}_{4}$
. 06	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{r}}+0.5 \mathrm{~W}_{5}$
. 07	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{r}}+0.5 \mathrm{~W}_{6}$
. 08	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{r}}+0.5 \mathrm{~W}_{7}$
. 09	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{r}}+0.5 \mathrm{~W}_{8}$
. 10	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~L}_{\mathrm{r}}+0.5 \mathrm{~W}_{\mathrm{m}}$
. 11	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}$
. 12	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{1}+0.5 \mathrm{~W}_{1}$
. 13	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{1}+0.5 \mathrm{~W}_{2}$
. 14	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{1}+0.5 \mathrm{~W}_{3}$
. 15	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{1}+0.5 \mathrm{~W}_{4}$
. 16	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{1}+0.5 \mathrm{~W}_{5}$
. 17	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{1}+0.5 \mathrm{~W}_{6}$
. 18	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{1}+0.5 \mathrm{~W}_{7}$
. 19	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{1}+0.5 \mathrm{~W}_{8}$
20	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{1}+0.5 \mathrm{~W}_{\mathrm{m}}$
. 21	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{2}+1.0 \mathrm{~L}_{\mathrm{f}}$
. 22	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{2}+0.5 \mathrm{~W}_{1}$
. 23	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{2}+0.5 \mathrm{~W}_{2}$
. 24	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{2}+0.5 \mathrm{~W}_{3}$
. 25	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{2}+0.5 \mathrm{~W}_{4}$
. 26	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{2}+0.5 \mathrm{~W}_{5}$
. 27	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{2}+0.5 \mathrm{~W}_{6}$
. 28	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{2}+0.5 \mathrm{~W}_{7}$
. 29	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{2}+0.5 \mathrm{~W}_{8}$
. 30	$1.2 \mathrm{D}_{1}+1.6 \mathrm{~S}_{2}+0.5 \mathrm{~W}_{\mathrm{m}}$
5.01	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.2 \mathrm{~S}_{1}$
. 02	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.2 \mathrm{~S}_{2}$

4.01	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~L}_{\mathrm{r}}+1.0 \mathrm{~W}_{1}$
. 02	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~L}_{\mathrm{r}}+1.0 \mathrm{~W}_{2}$
. 03	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~L}_{\mathrm{r}}+1.0 \mathrm{~W}_{3}$
. 04	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~L}_{\mathrm{r}}+1.0 \mathrm{~W}_{4}$
. 05	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~L}_{\mathrm{r}}+1.0 \mathrm{~W}_{5}$
. 06	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~L}_{\mathrm{r}}+1.0 \mathrm{~W}_{6}$
. 07	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~L}_{\mathrm{r}}+1.0 \mathrm{~W}_{7}$
. 08	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~L}_{\mathrm{r}}+1.0 \mathrm{~W}_{8}$
. 09	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~L}_{\mathrm{r}}+1.0 \mathrm{~W}_{\mathrm{m}}$
. 10	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{1}+1.0 \mathrm{~W}_{1}$
. 11	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{1}+1.0 \mathrm{~W}_{2}$
. 12	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{1}+1.0 \mathrm{~W}_{3}$
. 13	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{1}+1.0 \mathrm{~W}_{4}$
. 14	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{1}+1.0 \mathrm{~W}_{5}$
. 15	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{1}+1.0 \mathrm{~W}_{6}$
. 16	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{1}+1.0 \mathrm{~W}_{7}$
. 17	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{1}+1.0 \mathrm{~W}_{8}$
. 18	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{1}+1.0 \mathrm{~W}_{\mathrm{m}}$
. 19	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{2}+1.0 \mathrm{~W}_{1}$
. 20	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{2}+1.0 \mathrm{~W}_{2}$
. 21	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{2}+1.0 \mathrm{~W}_{3}$
. 22	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{2}+1.0 \mathrm{~W}_{4}$
. 23	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{2}+1.0 \mathrm{~W}_{5}$
. 24	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{2}+1.0 \mathrm{~W}_{6}$
. 25	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{2}+1.0 \mathrm{~W}_{7}$
. 26	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{2}+1.0 \mathrm{~W}_{8}$
. 27	$1.2 \mathrm{D}_{1}+1.0 \mathrm{~L}_{\mathrm{f}}+0.5 \mathrm{~S}_{2}+1.0 \mathrm{~W}_{\mathrm{M}}$
6.01	$0.9 \mathrm{D}_{1}+1.0 \mathrm{~W}_{1}$
. 02	$0.9 \mathrm{D}_{1}+1.0 \mathrm{~W}_{2}$
. 03	$0.9 \mathrm{D}_{1}+1.0 \mathrm{~W}_{3}$
. 04	$0.9 \mathrm{D}_{1}+1.0 \mathrm{~W}_{4}$
. 05	$0.9 \mathrm{D}_{1}+1.0 \mathrm{~W}_{5}$
. 06	$0.9 \mathrm{D}_{1}+1.0 \mathrm{~W}_{6}$
. 07	$0.9 \mathrm{D}_{1}+1.0 \mathrm{~W}_{7}$
. 08	$0.9 \mathrm{D}_{1}+1.0 \mathrm{~W}_{8}$
. 09	$0.9 \mathrm{D}_{1}+1.0 \mathrm{~W}_{\mathrm{m}}$

04a. Profile Design-Main Frame

Section Properties :

$\mathrm{E}=10100 \cdot \mathrm{ksi}$
$\mathrm{n}_{\mathrm{u}}=1.95$
Table 3.3-1
Table 3.4-1
$\mathrm{d}=9.921 \cdot \mathrm{in}$
$\mathrm{b}=4.803 \cdot \mathrm{in}$
Shape dimensions
$\mathrm{b}_{\mathrm{w}}=3.071 \cdot \mathrm{in}$
$\mathrm{t}_{\mathrm{w}}=0.157 \cdot \mathrm{in}$
$\mathrm{b}_{\mathrm{f}}=2.677 \cdot \mathrm{in}$
$\mathrm{t}_{\mathrm{f}}=0.16 \cdot \mathrm{in}$
$\mathrm{A}_{\mathrm{g}}=5.521 \cdot \mathrm{in}^{2}$
Cross-sectional area of Shape
$\mathrm{I}_{\mathrm{x}}=68.35 \cdot \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{y}}=22.21 \cdot \mathrm{in}^{4}$
Moment of inertia
$\mathrm{S}_{\mathrm{x}}=13.78 \cdot \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{y}}=9.25 \cdot \mathrm{in}^{3} \quad$ Section Modulus
$\mathrm{r}_{\mathrm{x}}=3.52 \cdot \mathrm{in}$
$\mathrm{r}_{\mathrm{y}}=2.01 \cdot \mathrm{in}$
Radius of Gyration
$J=43.27 \cdot$ in 4
$\mathrm{K}_{\mathrm{x}}:=1.0$
$\mathrm{K}_{\mathrm{y}}:=0.7$
$\mathrm{L}_{\mathrm{x}}=129 \cdot \mathrm{in}$
$\mathrm{L}_{\mathrm{y}}=129 \cdot \mathrm{in}$
$\mathrm{L}_{\mathrm{b}}:=\mathrm{L}_{\mathrm{y}}$

Factor for buckling
Torsional constant

Length for buckling
Length between Bracing Points

Selected Ratios :

$$
\frac{\mathrm{b}_{\mathrm{w}}}{\mathrm{t}_{\mathrm{w}}}=19.5 \quad \frac{\mathrm{~b}_{\mathrm{f}}}{\mathrm{t}_{\mathrm{f}}}=17 \quad \frac{\mathrm{~K}_{\mathrm{x}} \cdot \mathrm{~L}_{\mathrm{x}}}{\mathrm{r}_{\mathrm{x}}}=36.7 \quad \frac{\mathrm{~K}_{\mathrm{y}} \cdot \mathrm{~L}_{\mathrm{y}}}{\mathrm{r}_{\mathrm{y}}}=45 \quad \frac{\mathrm{~L}_{\mathrm{b}} \cdot \mathrm{~S}_{\mathrm{x}}}{0.5 \sqrt{\mathrm{I}_{\mathrm{y}} \cdot \mathrm{~J}}}=114.7
$$

The following allowable stresses are based on values from the "2005 Aluminum Design Manual"

Allowable Axial Stress:

Specification 3.4.1 - Tension, axial:
Any tension member.

Specification 3.4.7 - Compression in Columns:

All columns.

Specification 3.4.9 - Compression in Column Elements:
Flat elements supported on both edges.
Allowable Axial Stress:
$\mathrm{F}_{3.4 .1}=32.3 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .7 \mathrm{x}}=25.98 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .7 \mathrm{y}}=32.22 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .9}=30.31 \cdot \mathrm{ksi}$
$\mathrm{F}_{\mathrm{a}}=25.98 \cdot \mathrm{ksi} \quad$ Use in Eq. 4.1.1-1
$\mathrm{F}_{\mathrm{ao}}=30.31 \cdot \mathrm{ksi} \quad$ Use in Eq. 4.1.1-2
$\mathrm{F}_{\mathrm{ex}}=63.46 \cdot \mathrm{ksi} \quad \mathrm{F}_{\mathrm{ey}}=40.47 \cdot \mathrm{ksi}$

Allowable Bending Stress:

Specification 3.4.2 - Tension in Beams, extreme fibre, net section:
Flat elements in uniform tension (flanges).
Specification 3.4.14-Compression in Beams, gross section.:
Tubular shapes.
Specification 3.4.16-Compression in Beams, gross section:
Flat elements supported on both edges.
Specification 3.4.19-Compression in Beams, elements:
Flat elements supported on both edges with longitudinal stiffening.
Allowable Bending Stress:
$\mathrm{F}_{3.4 .2}=32.3 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .14}=29.88 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .16}=31.33 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .19}=43.22 \cdot \mathrm{ksi}$
$\mathrm{F}_{\mathrm{bx}}=29.88 \cdot \mathrm{ksi} \quad$ Use in Eq. 4.1.1-1
$\mathrm{F}_{\text {by }}=29.88 \cdot \mathrm{ksi}$
\& Eq. 4.1.1-2

Allowable Shear Stress:

Specification 3.4.20 - Shear in Elements, gross section:
$\mathrm{F}_{3.4 .20}=19.2 \cdot \mathrm{ksi}$
Unstiffened flat elements supported on both edges.

Actual Stress:

Member ID = "ms23" Load Case = "3.17-1.2D1+1.6S0+0.5W6"
Cmx :=0.85 Cmy $:=0.85$

$$
\begin{aligned}
& M_{x}=-63.57 \cdot \mathrm{kip} \cdot \mathrm{in} \\
& \mathrm{M}_{\mathrm{y}}=0.07 \cdot \mathrm{kip} \cdot \mathrm{in} \\
& \mathrm{C}=-8.76 \cdot \mathrm{kip} \\
& \mathrm{f}_{\mathrm{bx}}:=\left|\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{~S}_{\mathrm{x}}}\right|=4.61 \cdot \mathrm{ksi} \\
& \mathrm{f}_{\text {by }}:=\left|\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{~S}_{\mathrm{y}}}\right|=0.01 \cdot \mathrm{ksi} \quad \mathrm{f}_{\mathrm{ac}}:=\left|\frac{\mathrm{C}}{\mathrm{~A}_{\mathrm{g}}}\right|=1.59 \cdot \mathrm{ksi}
\end{aligned}
$$

Eq. 4.1.1-1: $\quad \mathrm{Eq} 1:=\frac{\mathrm{f}_{\mathrm{ac}}}{\mathrm{F}_{\mathrm{a}}}+\frac{\mathrm{Cmx} \cdot \mathrm{f}_{\mathrm{bx}}}{\left(1-\frac{\mathrm{f}_{\mathrm{ac}}}{\mathrm{F}_{\mathrm{ex}}}\right) \cdot \mathrm{F}_{\mathrm{bx}}}+\frac{\mathrm{Cmy} \cdot \mathrm{f}_{\mathrm{by}}}{\left(1-\frac{\mathrm{f}_{\mathrm{ac}}}{\mathrm{F}_{\mathrm{ey}}}\right) \cdot \mathrm{F}_{\mathrm{by}}}=0.2$
Eq1 is less than or equal to $1.0=$ "OK"

Eq. 4.1.1-2: \quad Eq2 $:=\frac{f_{a c}}{F_{a o}}+\frac{f_{b x}}{F_{b x}}+\frac{f_{b y}}{F_{b y}}=0.21$
Eq2 is less than or equal to $1.0=$ "OK"

Member ID = "ms25"
Load Case = "6.05-0.9D1+1.0W5"

$$
\begin{array}{lll}
M_{x}=-140.86 \cdot k i p \cdot \text { in } & M_{y}=0.03 \cdot \mathrm{kip} \cdot \mathrm{in} & T=6.65 \cdot \mathrm{kip} \\
f_{b x}:=\left|\frac{M_{x}}{S_{x}}\right|=10.22 \cdot \mathrm{ksi} & f_{b y}:=\left|\frac{M_{y}}{S_{y}}\right|=0 \cdot \mathrm{ksi} & f_{a t}:=\frac{T}{A_{g}}=1.2 \cdot \mathrm{ksi}
\end{array}
$$

Eq. 4.1.2-1 : \quad Eq3 $:=\frac{f_{a t}}{F_{3.4 .1}}+\frac{f_{b x}}{F_{b x}}+\frac{f_{b y}}{F_{b y}}=0.38$
Eq3 is less than or equal to $1.0=$ "OK"

04a-Profile Design-Main Frame.xmcd	2 of 2
	Approved for Construction

04b-Profile Design-Gable Uprights

Section Properties :

$\mathrm{E}=10100 \cdot \mathrm{ksi}$
$\mathrm{n}_{\mathrm{u}}=1.95$
Table 3.3-1
Table 3.4-1
$\mathrm{d}=7.874 \cdot \mathrm{in}$
$\mathrm{b}=4.724 \cdot \mathrm{in}$
Shape dimensions
$\mathrm{b}_{\mathrm{w}}=5.846 \cdot \mathrm{in}$
$\mathrm{t}_{\mathrm{w}}=0.118 \cdot \mathrm{in}$
$\mathrm{b}_{\mathrm{f}}=2.638 \cdot \mathrm{in}$
$\mathrm{t}_{\mathrm{f}}=0.12 \cdot \mathrm{in}$
$\mathrm{A}_{\mathrm{g}}=3.495 \cdot \mathrm{in}^{2}$
Cross-sectional area of Shape
$\mathrm{I}_{\mathrm{x}}=31.56 \cdot \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{y}}=12.91 \cdot \mathrm{in}^{4} \quad$ Moment of inertia
$\mathrm{S}_{\mathrm{x}}=8.02 \cdot \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{y}}=5.46 \cdot \mathrm{in}^{3} \quad$ Section Modulus
$\mathrm{r}_{\mathrm{x}}=3.01 \cdot \mathrm{in}$
$\mathrm{r}_{\mathrm{y}}=1.92 \cdot \mathrm{in}$
Radius of Gyration
$\mathrm{J}=22.65 \cdot \mathrm{in}^{4}$
$\mathrm{K}_{\mathrm{x}}:=1.0$
$\mathrm{K}_{\mathrm{y}}:=0.7$
$\mathrm{L}_{\mathrm{x}}=272 \cdot \mathrm{in}$
$\mathrm{L}_{\mathrm{y}}=208 \cdot \mathrm{in}$
Torsional constant
Factor for buckling
$\mathrm{L}_{\mathrm{b}}:=\mathrm{L}_{\mathrm{y}}$

Length for buckling
Length between Bracing Points

Selected Ratios :

$$
\frac{\mathrm{b}_{\mathrm{w}}}{\mathrm{t}_{\mathrm{w}}}=49.5 \quad \frac{\mathrm{~b}_{\mathrm{f}}}{\mathrm{t}_{\mathrm{f}}}=22.3 \quad \frac{\mathrm{~K}_{\mathrm{x}} \cdot \mathrm{~L}_{\mathrm{x}}}{\mathrm{r}_{\mathrm{x}}}=90.5 \quad \frac{\mathrm{~K}_{\mathrm{y}} \cdot \mathrm{~L}_{\mathrm{y}}}{\mathrm{r}_{\mathrm{y}}}=75.8 \quad \frac{\mathrm{~L}_{\mathrm{b}} \cdot \mathrm{~S}_{\mathrm{x}}}{0.5 \sqrt{\mathrm{I}_{\mathrm{y}} \cdot \mathrm{~J}}}=195
$$

The following allowable stresses are based on values from the " 2005 Aluminum Design Manual"

Allowable Axial Stress:

Specification 3.4.1 - Tension, axial:
Any tension member.
Specification 3.4.7-Compression in Columns: All columns.

Specification 3.4.9-Compression in Column Elements:
Flat elements supported on both edges.

Allowable Axial Stress:

$\mathrm{F}_{3.4 .1}=32.3 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .7 \mathrm{x}}=9.95 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .7 \mathrm{y}}=13.53 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .9}=16.43 \cdot \mathrm{ksi}$
$\mathrm{F}_{\mathrm{a}}=9.95 \cdot \mathrm{ksi} \quad$ Use in Eq. 4.1.1-1
$\mathrm{F}_{\mathrm{ao}}=16.43 \cdot \mathrm{ksi} \quad$ Use in Eq. 4.1.1-2
$\mathrm{F}_{\mathrm{ex}}=9.95 \cdot \mathrm{ksi} \quad \mathrm{F}_{\text {ey }}=13.53 \cdot \mathrm{ksi}$

Allowable Bending Stress:

Specification 3.4.2 - Tension in Beams, extreme fibre, net section:
Flat elements in uniform tension (flanges).
Specification 3.4.14-Compression in Beams, gross section.:
Tubular shapes.
Specification 3.4.16-Compression in Beams, gross section:
Flat elements supported on both edges.
Specification 3.4.19-Compression in Beams, elements:
Flat elements supported on both edges with longitudinal stiffening.
Allowable Bending Stress:
$\mathrm{F}_{3.4 .2}=32.3 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .14}=28.79 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .16}=29.15 \cdot \mathrm{ksi}$
$\mathrm{F}_{3.4 .19}=43.22 \cdot \mathrm{ksi}$
$\mathrm{F}_{\mathrm{bx}}=28.79 \cdot \mathrm{ksi} \quad$ Use in Eq. 4.1.1-1
$\mathrm{F}_{\text {by }}=28.79 \cdot \mathrm{ksi}$
\& Eq. 4.1.1-2

Allowable Shear Stress:

Specification 3.4.20 - Shear in Elements, gross section:
$\mathrm{F}_{3.4 .20}=16.11 \cdot \mathrm{ksi}$
Unstiffened flat elements supported on both edges.

Actual Stress:

Member ID = "gv001" Load Case = "3.15-1.2D1+1.6S0+0.5W4"
Cmx $:=0.85 \quad$ Cmy $:=0.85$

$$
\begin{array}{lll}
\mathrm{M}_{\mathrm{x}}=-37.61 \cdot \mathrm{kip} \cdot \mathrm{in} & \mathrm{M}_{y}=3.09 \cdot \mathrm{kip} \cdot \mathrm{in} & C=-1.22 \cdot \mathrm{kip} \\
\mathrm{f}_{\mathrm{bx}}:=\left|\frac{\mathrm{M}_{x}}{\mathrm{~S}_{\mathrm{x}}}\right|=4.69 \cdot \mathrm{ksi} & \mathrm{f}_{\mathrm{by}}:=\left|\frac{\mathrm{M}_{y}}{\mathrm{~S}_{\mathrm{y}}}\right|=0.57 \cdot \mathrm{ksi} & \mathrm{f}_{\mathrm{ac}}:=\left|\frac{\mathrm{C}}{\mathrm{~A}_{\mathrm{g}}}\right|=0.35 \cdot \mathrm{ksi}
\end{array}
$$

Eq. 4.1.1-1: \quad Eq1 $:=\frac{f_{a c}}{F_{a}}+\frac{C m x \cdot f_{b x}}{\left(1-\frac{f_{a c}}{F_{e x}}\right) \cdot F_{b x}}+\frac{C m y \cdot f_{b y}}{\left(1-\frac{f_{a c}}{F_{e y}}\right) \cdot F_{b y}}=0.2$
Eq1 is less than or equal to $1.0=" \mathrm{OK}^{\prime}$

Eq. 4.1.1-2 : $\quad E q 2:=\frac{f_{a c}}{F_{a o}}+\frac{f_{b x}}{F_{b x}}+\frac{f_{b y}}{F_{b y}}=0.2$
Eq2 is less than or equal to $1.0=" \mathrm{OK}^{\prime}$

Member ID = "gv001"
Load Case = "6.04-0.9D1+1.0W4"

$$
\begin{array}{lll}
M_{x}=-75.22 \cdot \mathrm{kip} \cdot \mathrm{in} & M_{y}=6.68 \cdot \mathrm{kip} \cdot \mathrm{in} & T=0.16 \cdot \mathrm{kip} \\
f_{b x}:=\left|\frac{M_{x}}{S_{x}}\right|=9.38 \cdot \mathrm{ksi} & \mathrm{f}_{\mathrm{by}}:=\left|\frac{M_{y}}{S_{y}}\right|=1.22 \cdot \mathrm{ksi} & f_{a t}:=\frac{T}{A_{g}}=0.05 \cdot \mathrm{ksi}
\end{array}
$$

Eq. 4.1.2-1 : $\quad E q 3:=\frac{f_{a t}}{F_{3.4 .1}}+\frac{f_{b x}}{F_{b x}}+\frac{f_{b y}}{F_{b y}}=0.37$
Eq3 is less than or equal to $1.0=$ "OK"

04b-Profile Design-Gable uprights.xmcd	2 of 2
	Approved for Construction

05. Splice Design

Eave Splice Design :

Section Properties :

Materials of construction:	S235 Steel	
Modulus of elasticity	$\mathrm{E}=29000 \cdot \mathrm{ksi}$	
Cross-sectional area	$\mathrm{A}_{\mathrm{g}}=6.467 \cdot \mathrm{in}^{2}$	
Shape dimensions	$\mathrm{b}_{\mathrm{w}}=9.528 \cdot \mathrm{in}$	$\mathrm{b}_{\mathrm{f}}=2.953 \cdot \mathrm{in}$
	$\mathrm{t}_{\mathrm{w}}=0.472 \cdot \mathrm{in}$	$\mathrm{t}_{\mathrm{f}}=0.295 \cdot \mathrm{in}$
Moment of inertia, strong/weak axis	$\mathrm{I}_{\mathrm{x}}=74.54 \cdot \mathrm{in}^{4}$	$\mathrm{I}_{\mathrm{y}}=14.74 \cdot \mathrm{in}^{4}$
Section Modulus, strong/weak axis	$\mathrm{S}_{\mathrm{x}}=15.65 \cdot \mathrm{in}^{3}$	$\mathrm{~S}_{\mathrm{y}}=6.72 \cdot \mathrm{in}^{3}$
Radius of Gyration, strong/weak axis	$\mathrm{r}_{\mathrm{x}}=3.4 \cdot \mathrm{in}$	$\mathrm{r}_{\mathrm{y}}=1.51 \cdot \mathrm{in}$

Chapter D - Design of Members for Tension

$\phi_{t} \cdot P_{n} \quad$ design compressive strength for LRFD design where :
$P_{n} \quad$ nominal tensile strength as determined according to Sections D2-D6
$\phi_{\text {t.gross }}=0.9 \quad \phi_{\text {t.net }}=0.75 \quad$ for LRFD design
Tensile yielding in the gross section

$$
\begin{align*}
& \mathrm{P}_{\mathrm{ny}}=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{g}} \tag{D2-1}\\
& \mathrm{P}_{\mathrm{ny}}:=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{g}}=220.42 \cdot \mathrm{kip}
\end{align*}
$$

Tensile rupture in the net section

$$
\begin{align*}
& \mathrm{P}_{\mathrm{nr}}=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{e}} \tag{D2-2}\\
& \mathrm{P}_{\mathrm{nr}}:=\mathrm{F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{e}}=337.67 \cdot \mathrm{kip}
\end{align*}
$$

Design tensile strength / Allowable tensile strength
$\phi \mathrm{P}_{\mathrm{nt}}=198.38 \cdot \mathrm{kip}$ for LRFD design tensile strength

Chapter E - Design of Members for Compression

$\phi_{\mathrm{c}} \cdot \mathrm{P}_{\mathrm{n}} \quad$ design compressive strength for LRFD design
where:
$\mathrm{P}_{\mathrm{n}} \quad$ nominal compressive strength as determined according to Sections E3-E7
$\phi_{\mathrm{c}}=0.9 \quad$ for LRFD design
L laterally unbraced length of the member, in (mm)
r governing radius of gyration, in (mm)
K effective length factor determined in accordance with Section C2
E3-Compressive strength for flexural buckling of members without slender elements
$\mathrm{P}_{\mathrm{n}}=\mathrm{F}_{\mathrm{cr}} \cdot \mathrm{Ag}_{\mathrm{g}}$
$\mathrm{F}_{\mathrm{e}}:=\frac{\pi^{2} \cdot \mathrm{E}}{(\mathrm{K} \cdot)^{2}}=59.17 \cdot \mathrm{ksi}$
$\left(\frac{\mathrm{K} \cdot \mathrm{L}}{\mathrm{r}_{\mathrm{v}}}\right)^{2}$
$\mathrm{F}_{\text {cr }}:=\operatorname{if}\left[\frac{\mathrm{K} \cdot \mathrm{L}}{\mathrm{r}_{\mathrm{y}}} \leq 4.71 \cdot \sqrt{\frac{\mathrm{E}}{\mathrm{F}_{\mathrm{y}}}},\left(0.688 \frac{\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{F}_{\mathrm{e}}}}{)} \cdot \mathrm{F}_{\mathrm{y}}, 0.877 \cdot \mathrm{~F}_{\mathrm{e}}\right]=27.48 \cdot \mathrm{ksi}\right.$
$\mathrm{P}_{\mathrm{n}}:=\mathrm{F}_{\mathrm{cr}} \cdot \mathrm{A}_{\mathrm{g}}=177.71 \cdot \mathrm{kip}$
Design compressive strength / Allowable compressive strength
$\phi \mathrm{P}_{\mathrm{n}}=159.93 \cdot \mathrm{kin}$ for LRFD design compressive strength
Chapter F - Design of Members for Flexure
F1. General Provisions
$\phi_{b} \cdot \mathrm{M}_{\mathrm{n}} \quad$ design flexural strength for LRFD design
where:
$\mathrm{M}_{\mathrm{n}} \quad$ nominal flexural strength as determined according to Sections F2-F10
$\phi_{\mathrm{b}}=0.90 \quad$ for LRFD design
F7. Rectangular HSS members
Yielding

$$
\begin{aligned}
& M_{n y}:=F_{y} \cdot Z_{x}=682.36 \cdot \mathrm{kip} \cdot \mathrm{in} \\
& M_{p}:=F_{y} \cdot Z_{x}
\end{aligned}
$$

Flange Local Buckling

For compact section, the limit state of flange local buckling does not apply
For noncompact sections

$$
\begin{equation*}
M_{n}:=\min \left[M_{p}-\left(M_{p}-F_{y} \cdot S_{x}\right) \cdot\left(3.57 \cdot \frac{b}{t_{d}} \cdot \sqrt{\frac{F_{y}}{E}}-4.0\right), M_{p}\right]=682.36 \cdot \mathrm{kip} \cdot \mathrm{in} \tag{F7-2}
\end{equation*}
$$

For sections with slender walls

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{e}}:=1.92 \cdot \mathrm{t}_{\mathrm{d}} \cdot \sqrt{\frac{E}{\mathrm{~F}_{\mathrm{y}}}} \cdot\left(1-\frac{0.38}{\frac{\mathrm{~b}}{\mathrm{t}_{\mathrm{d}}}} \cdot \sqrt{\frac{E}{\mathrm{~F}_{\mathrm{y}}}}\right)=-15.98 \cdot \mathrm{in} \\
& \mathrm{~S}_{\text {eff }}:=\mathrm{if}\left[\mathrm{~b}_{\mathrm{e}}<\mathrm{b}, \frac{\mathrm{~b}_{e} \cdot \mathrm{~h}^{3}-\left(\mathrm{b}_{\mathrm{e}}-2 \cdot \mathrm{t}_{\mathrm{d}}\right) \cdot\left(\mathrm{h}-2 \cdot \mathrm{t}_{\mathrm{d}}\right)^{3}}{6 \cdot \mathrm{~h}}, \mathrm{~S}_{\mathrm{x}}\right] \\
& \mathrm{M}_{\mathrm{n}}:=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~S}_{\mathrm{eff}}=-1737.01 \cdot \mathrm{kip} \cdot \mathrm{in}
\end{aligned}
$$

Flange Section Status $=$ "The flange section of the rectangular HSS is compact since $\mathrm{b} / \mathrm{t}=3.72$ "

$$
\mathrm{M}_{\mathrm{nfb}}=999999999 \cdot \mathrm{kip} \cdot \mathrm{in}
$$

Web Local Buckling

For compact section, the limit state of web local buckling does not apply
For noncompact sections

$$
M_{n}:=\min \left[M_{p}-\left(M_{p}-F_{y} \cdot S_{x}\right) \cdot\left(3.05 \cdot \frac{h}{t_{d}} \cdot \sqrt{\frac{F_{y}}{E}}-0.738\right), M_{p}\right]=454.56 \cdot \mathrm{kip} \cdot \mathrm{in}
$$

Web Section Status = "The web section of the rectangular HSS is compact since $\mathrm{h} / \mathrm{t}=18.68$ "
Design Flexural Strength
$\phi \mathrm{M}_{\mathrm{n}}=614.12 \cdot \mathrm{kip} \cdot \mathrm{in}$ for LRFD design compressive strength
Stresses in Splice:
The connection splice is considered to carry the entire moment where the roof and column profiles meet.
Member ID $=$ "mr20" Load Case $=$ "3.17-1.2D1+1.6S0+0.5W6" $\quad \mathrm{M}_{\mathrm{x}}=-96.15 \cdot \mathrm{kip} \cdot \mathrm{in} \quad \mathrm{V}=1.86 \cdot \mathrm{kip} \quad \mathrm{C}=-8.88 \cdot \mathrm{kip}$
Stress interaction on the splice :

$$
\text { IE }:=\text { if }\left[\frac{|\mathrm{C}|}{\phi \mathrm{P}_{\mathrm{nc}}} \geq 0.2, \frac{|\mathrm{C}|}{\phi \mathrm{P}_{\mathrm{nc}}}+\frac{8}{9} \cdot\left(\frac{\left|\mathrm{M}_{\mathrm{x}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}+\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}\right), \frac{|\mathrm{C}|}{2 \cdot \phi P_{\mathrm{nc}}}+\left(\frac{\left|\mathrm{M}_{\mathrm{x}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}+\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}\right)\right]=0.18
$$

IE is less than or equal to $1.0=$ "OK"
Member ID $=$ "mr20" \quad Load Case $=$ "3.17-1.2D1+1.6S0 $+0.5 \mathrm{~W} 6 " \mathrm{M}_{\mathrm{x}}=-96.15 \cdot \mathrm{kip} \cdot \mathrm{in} \quad \mathrm{V}=1.86 \cdot \mathrm{kip}$ Stress interaction on the splice :

$$
\text { IE : }=\text { if }\left[\frac{\mathrm{T}}{\phi \mathrm{P}_{\mathrm{nt}}} \geq 0.2, \frac{\mathrm{~T}}{\phi \mathrm{P}_{\mathrm{nt}}}+\frac{8}{9} \cdot\left(\frac{\left|\mathrm{M}_{\mathrm{x}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}+\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}\right), \frac{\mathrm{T}}{2 \cdot \phi \mathrm{P}_{\mathrm{nt}}}+\left(\frac{\left|\mathrm{M}_{\mathrm{x}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}+\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}\right)\right]=0.35
$$

IE is less than or equal to 1.0

HTS tentiQ GmbH

Peak Splice Design :

Section Properties :

Materials of construction:	S355 Steel	
Modulus of elasticity	$\mathrm{E}=29000 \cdot \mathrm{ksi}$	
Cross-sectional area	$\mathrm{A}_{\mathrm{g}}=6.467 \cdot \mathrm{in}^{2}$	
Shape dimensions	$\mathrm{b}_{\mathrm{w}}=9.528 \cdot \mathrm{in}$	$\mathrm{b}_{\mathrm{f}}=2.953 \cdot \mathrm{in}$
	$\mathrm{t}_{\mathrm{w}}=0.472 \cdot \mathrm{in}$	$\mathrm{t}_{\mathrm{f}}=0.295 \cdot \mathrm{in}$
Moment of inertia, strong/weak axis	$\mathrm{I}_{\mathrm{x}}=74.54 \cdot \mathrm{in}^{4}$	$\mathrm{I}_{\mathrm{y}}=14.74 \cdot \mathrm{in}^{4}$
Section Modulus, strong/weak axis	$\mathrm{S}_{\mathrm{x}}=15.65 \cdot \mathrm{in}^{3}$	$\mathrm{~S}_{\mathrm{y}}=6.72 \cdot \mathrm{in}^{3}$
Radius of Gyration, strong/weak axis	$\mathrm{r}_{\mathrm{x}}=3.4 \cdot \mathrm{in}$	$\mathrm{r}_{\mathrm{y}}=1.51 \cdot \mathrm{in}^{2}$

Stresses in Splice :

The connection splice is considered to carry the entire moment where the main profiles meet.
Member ID = "mr3"
Load Case = "3.26-1.2D1+1.6S6+0.5W6"

$$
\mathrm{M}_{\mathrm{x}}=12.28 \cdot \mathrm{kip} \cdot \text { in } \quad \mathrm{V}=-0.46 \cdot \text { kip } \quad \mathrm{C}=-0.97 \cdot \text { kip }
$$

Stress interaction on the splice :

$$
\text { IE }:=\operatorname{if}\left[\frac{|\mathrm{C}|}{\phi \mathrm{P}_{\mathrm{nc}}} \geq 0.2, \frac{|\mathrm{C}|}{\phi \mathrm{P}_{\mathrm{nc}}}+\frac{8}{9} \cdot\left(\frac{\left|\mathrm{M}_{\mathrm{x}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}+\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}\right), \frac{|\mathrm{C}|}{2 \cdot \phi \mathrm{P}_{\mathrm{nc}}}+\left(\frac{\left|\mathrm{M}_{\mathrm{x}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}+\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}\right)\right]=0.02
$$

IE is less than or equal to $1.0=$ "OK"

Member ID $=$ "mr3" Load Case $=$ "3.26-1.2D1+1.6S6+0.5W6"

$$
\mathrm{M}_{\mathrm{x}}=30.03 \cdot \text { kip } \cdot \text { in } \quad \mathrm{V}=-0.6 \cdot \text { kip } \quad \mathrm{T}=1.24 \cdot \text { kip }
$$

Stress interaction on the splice :

$$
\text { IE }:=\operatorname{if}\left[\frac{\mathrm{T}}{\phi \mathrm{P}_{\mathrm{nt}}} \geq 0.2, \frac{\mathrm{~T}}{\phi \mathrm{P}_{\mathrm{nt}}}+\frac{8}{9} \cdot\left(\frac{\left|\mathrm{M}_{\mathrm{x}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}+\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}\right), \frac{\mathrm{T}}{2 \cdot \phi \mathrm{P}_{\mathrm{nt}}}+\left(\frac{\left|\mathrm{M}_{\mathrm{x}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}+\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\phi \mathrm{M}_{\mathrm{n}}}\right)\right]=0.05
$$

IE is less than or equal to $1.0=$ "OK"

05-Splice Design.xmcd	4 of 4
	Culblin of

HTS tentiQ GmbH Hinter der Schlagmuhle 1 63699 Kefenrod Germany

06. Base plate Design

Material: S235
$\mathrm{Fy}_{\mathrm{AE} 235}=34.08 \cdot \mathrm{ksi}$
$\mathrm{Fut}_{\mathrm{AE} 235}=49.31 \cdot \mathrm{ksi}$
$\mathrm{E}_{\mathrm{AE} 235}=30457.92 \cdot \mathrm{ksi}$
Vert. Plate :

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{v}}=135 \cdot \mathrm{~mm} \quad \mathrm{~d}_{\mathrm{v}}=115 \cdot \mathrm{~mm} \\
& \mathrm{t}_{\mathrm{v}}=25 \cdot \mathrm{~mm}
\end{aligned}
$$

Base Plate :

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{b}}=320 \cdot \mathrm{~mm} \quad \mathrm{~d}_{\mathrm{b}}=320 \cdot \mathrm{~mm} \\
& \mathrm{t}_{\mathrm{b}}=15 \cdot \mathrm{~mm}
\end{aligned}
$$

Vertical plates:

Section Properties (single vertical plate):

$$
\mathrm{A}_{\mathrm{v}}:=\mathrm{b}_{\mathrm{v}} \cdot \mathrm{t}_{\mathrm{v}}=5.23 \cdot \mathrm{in}^{2} \quad \mathrm{~S}_{\mathrm{vx}}:=\frac{\mathrm{t}_{\mathrm{v}} \cdot \mathrm{~b}_{\mathrm{v}}^{2}}{6}=4.63 \cdot \mathrm{in}^{3} \quad \mathrm{~S}_{\mathrm{vy}}:=\frac{\mathrm{b}_{\mathrm{v}} \cdot \mathrm{t}_{\mathrm{v}}^{2}}{6}=0.86 \cdot \mathrm{in}^{3}
$$

Allowable Stress :
$\sigma_{\text {allowable }}:=\phi_{\mathrm{b}} \cdot \mathrm{Fy}_{\mathrm{AE} 235}=30.68 \cdot \mathrm{ksi}$

Actual Stress :

Moment arm above Section: $\quad d_{B}=9.45 \cdot$ in

LoadCase $_{0}=$ "6.02-0.9D1+1.0W2"

$$
\sigma:=\left|\frac{\mathrm{V}_{0}}{2 \cdot \mathrm{~A}_{\mathrm{v}}}+\frac{0.5 \cdot \mathrm{H}_{0} \cdot \mathrm{~d}_{\mathrm{B}}}{2 \cdot \mathrm{~S}_{\mathrm{vy}}}\right|=6.04 \cdot \mathrm{ksi}
$$

LoadCase $_{1}=$ "6.06-0.9D1+1.0W6"

$$
\sigma:=\left|\frac{\mathrm{V}_{1}}{(2) \cdot \mathrm{A}_{\mathrm{v}}}-\frac{0.5 \cdot \mathrm{H}_{1} \cdot \mathrm{~d}_{\mathrm{B}}}{2 \cdot \mathrm{~S}_{\mathrm{vy}}}\right|=7.45 \cdot \mathrm{ksi}
$$

$$
\mathrm{H}_{0}=-2.09 \cdot \mathrm{kip} \quad \mathrm{~V}_{0}=-2.99 \cdot \mathrm{kip}
$$

σ is less than or equal to $\sigma_{\text {allowable }}=$ "OK"
$\mathrm{H}_{1}=2.56 \cdot \mathrm{kip} \quad \mathrm{V}_{1}=-4.18 \cdot \mathrm{kip}$
σ is less than or equal to $\sigma_{\text {allowable }}=$ "OK"

Bending of Base Plate :

Allowable Stress :
$\sigma_{\text {allowable }}:=\phi_{\mathrm{b}} \cdot \mathrm{Fy}_{\mathrm{AE} 355}=46.34 \cdot \mathrm{ksi}$
Surface area of base plate : $\quad \mathrm{A}:=\mathrm{L} \cdot \mathrm{W}=158.72 \cdot \mathrm{in}^{2}$
The reaction forces act on a distance "d" above the bottom side of plate: $\mathrm{d}=225 \cdot \mathrm{~mm}$
LoadCase $_{0}=$ "3.17-1.2D1+1.6S0+0.5W6"

$$
\mathrm{H}_{0}=1.04 \cdot \mathrm{kip} \quad \mathrm{~V}_{0}=4.45 \cdot \mathrm{kip}
$$

These forces result in the following pressure under the baseplate:

$$
\begin{aligned}
\mathrm{f}_{\max }:=\frac{\mathrm{V}_{0}}{\mathrm{~A}}+\frac{\mathrm{H}_{0} \cdot \mathrm{~d} \cdot(6)}{\mathrm{L} \cdot \mathrm{~W}^{2}} \quad \mathrm{f}_{\max }=383.78 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \\
\mathrm{f}_{\max }=0.056 \cdot \mathrm{ksi}
\end{aligned}
$$

$$
\mathrm{f}_{\min }:=\frac{\mathrm{V}_{0}}{\mathrm{~A}}-\frac{\mathrm{H}_{0} \cdot \mathrm{~d} \cdot(6)}{\mathrm{L} \cdot \mathrm{~W}^{2}} \quad \mathrm{f}_{\min }=2.7 \cdot \frac{\mathrm{kN}}{\mathrm{~m}^{2}}
$$

$$
\mathrm{f}_{\min }=0 \cdot \mathrm{ksi}
$$

Section A-A:

The pressure f_{A} equals: $\quad \mathrm{f}_{\mathrm{A}}:=\mathrm{f}_{\max }-\left(\left|\mathrm{f}_{\max }\right|+\left|\mathrm{f}_{\min }\right|\right) \cdot \frac{153 \cdot \mathrm{~mm}}{300 \cdot \mathrm{~mm}} \quad \mathrm{f}_{\mathrm{A}}=186.7 \cdot \frac{\mathrm{kN}}{\mathrm{m}^{2}} \quad \mathrm{f}_{\mathrm{A}}=0.03 \cdot \mathrm{ksi}$
The moment resulting from the pressure under the plate equals :

$$
\mathrm{M}_{\mathrm{A}}:=\left(\frac{\mathrm{f}_{\max }+\mathrm{f}_{\mathrm{A}}}{2}\right) \cdot 153 \cdot \mathrm{~mm} \cdot\left(\frac{153 \cdot \mathrm{~mm}}{2} \cdot 300 \cdot \mathrm{~mm}\right) \quad \mathrm{M}_{\mathrm{A}}=1 \cdot \mathrm{kN} \cdot \mathrm{~m} \quad \quad \mathrm{M}_{\mathrm{A}}=8.9 \cdot \mathrm{kip} \cdot \mathrm{in}
$$

$$
\text { The actual stress equals : } \quad \sigma_{\mathrm{A}}:=\frac{\mathrm{M}_{\mathrm{A}} \cdot 6}{\mathrm{~L} \cdot \mathrm{~T}^{2}} \quad \sigma_{\mathrm{A}}=83.5 \cdot \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \quad \sigma_{\mathrm{A}}=12.1 \cdot \mathrm{ksi}
$$

HTS tentiQ GmbH Hinter der Schlagmuhle 1 63699 Kefenrod Germany

7.Purlin-120x80x3

Section Properties :

Table 3.3-1
Yield/Ultimate stresses
Shape dimensions

$$
\begin{aligned}
& \mathrm{E}=29000 \cdot \mathrm{ksi} \\
& \mathrm{~F}_{\mathrm{y}}=50 \cdot \mathrm{ksi} \quad \mathrm{~F}_{\mathrm{u}}=65 \cdot \mathrm{ksi} \\
& \mathrm{~h}=4.72 \cdot \mathrm{in} \quad \mathrm{~b}=3.15 \cdot \mathrm{in} \\
& \mathrm{t}=0.12 \cdot \mathrm{in}
\end{aligned}
$$

Cross-sectional area $\quad \mathrm{A}_{\mathrm{g}}=1.77 \cdot \mathrm{in}^{2}$

Moment of inertia	$\mathrm{I}_{\mathrm{x}}=5.53 \cdot \mathrm{in}^{4}$	$\mathrm{I}_{\mathrm{y}}=2.97 \cdot \mathrm{in}^{4}$
Section modulus	$\mathrm{S}_{\mathrm{x}}=2.34 \cdot \mathrm{in}^{3}$	$\mathrm{~S}_{\mathrm{y}}=1.88 \cdot \mathrm{in}^{3}$
Radius of gyration	$\mathrm{r}_{\mathrm{x}}=1.79 \cdot \mathrm{in}$	$\mathrm{r}_{\mathrm{y}}=1.3 \cdot \mathrm{in}$

Torsional constant
$J=6.16 \cdot \mathrm{in}^{4}$

Table B4.1 Limiting Width-Thickness Ratios for Compression Elements
Case 12 Uniform compression in flanges of rectangular box and hollow structural sections of uniform thickness subject to bendina or compression.

$$
\mathrm{b}=2.82 \cdot \text { in } \quad \mathrm{t}=0.12 \cdot \mathrm{in}
$$

$b / t_{d}=25.67$
$\lambda_{\mathrm{p}}:=1.12 \cdot \sqrt{\frac{\mathrm{E}}{\mathrm{F}_{\mathrm{y}}}}=26.97$
$\lambda_{\mathrm{r}}:=1.40 \cdot \sqrt{\frac{\mathrm{E}}{\mathrm{F}_{\mathrm{y}}}}=33.72$
Section is $=$ "compact"

Case 13 Flexure in webs of rectangular HSS

$$
\mathrm{h}=4.39 \cdot \text { in } \quad \mathrm{t}=0.12 \cdot \text { in } \quad \mathrm{h} / \mathrm{t}_{\mathrm{d}}=40.01
$$

$$
\lambda_{\mathrm{p}}:=2.42 \cdot \sqrt{\frac{\mathrm{E}}{\mathrm{~F}_{\mathrm{y}}}}=58.28
$$

$\lambda_{\mathrm{r}}:=5.70 \cdot \sqrt{\frac{\mathrm{E}}{\mathrm{F}_{\mathrm{y}}}}=137.27$ Section is $=$ "compact"

Allowable Strength:

Chapter D - Design of Members for Tension
Chapter E-Design of Members for Compression
Chapter F - Design of Members for Flexure
$\mathrm{P}_{\mathrm{c}}=79.61 \cdot \mathrm{kip}$
$\mathrm{P}_{\mathrm{c}}=17.27 \cdot \mathrm{kip}$
$M_{c x}=126.9 \cdot \mathrm{kip} \cdot \mathrm{in}$
$M_{c y}=96.21 \cdot \mathrm{kip} \cdot \mathrm{in}$

Actual Required Strength:

$$
\begin{array}{lll}
\text { (worst case shown) } & \text { Member ID }=\text { "pl3" } & \text { Load Case }=" 6.04-0.9 \mathrm{D} 1+1.0 \mathrm{~W} 4 " \\
M_{r x}=0 \cdot \mathrm{kip} \cdot \mathrm{in} & \mathrm{M}_{\mathrm{ry}}=0 \cdot \mathrm{kip} \cdot \mathrm{in} & \mathrm{P}_{\mathrm{r}}=-4.31 \cdot \mathrm{kip} \\
\text { For } \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{P}_{\mathrm{c}}} \geq 0.2 & \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{P}_{\mathrm{c}}}+\frac{8}{9} \cdot\left(\frac{\mathrm{M}_{\mathrm{rx}}}{\mathrm{M}_{\mathrm{cx}}}+\frac{\mathrm{M}_{\mathrm{ry}}}{\mathrm{M}_{\mathrm{cy}}}\right) \leq 1.0 & \text { (H1-1a) } \\
\text { For } \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{P}_{\mathrm{c}}}<0.2 & \frac{\mathrm{P}_{\mathrm{r}}}{2 \cdot \mathrm{P}_{\mathrm{c}}}+\left(\frac{\mathrm{M}_{\mathrm{rx}}}{\mathrm{M}_{\mathrm{cx}}}+\frac{\mathrm{M}_{\mathrm{ry}}}{\mathrm{M}_{\mathrm{cy}}}\right) \leq 1.0 \\
\text { IE }:=\operatorname{if}\left[\frac{\left|\mathrm{P}_{\mathrm{r}}\right|}{\mathrm{P}_{\mathrm{c}}} \geq 0.2, \frac{\left|\mathrm{P}_{\mathrm{r}}\right|}{\mathrm{P}_{\mathrm{c}}}+\frac{8}{9} \cdot\left(\frac{\left|\mathrm{M}_{\mathrm{rx}}\right|}{\mathrm{M}_{\mathrm{cx}}}+\frac{\left|\mathrm{M}_{\mathrm{ry}}\right|}{\mathrm{M}_{\mathrm{cy}}}\right), \frac{\left|\mathrm{P}_{\mathrm{r}}\right|}{2 \cdot \mathrm{P}_{\mathrm{c}}}+\left(\frac{\left|\mathrm{M}_{\mathrm{rx}}\right|}{\mathrm{M}_{\mathrm{cx}}}+\frac{\left|\mathrm{M}_{\mathrm{ry}}\right|}{\mathrm{M}_{\mathrm{cy}}}\right)\right]=0.25
\end{array}
$$

IE is less than or equal to $1.0=$ "OK"

HTS tentiQ GmbH Hinter der Schlagmuhle 1 63699 Kefenrod Germany

This page intentionally left blank

8. Bracing Cables

The roof bracing cables are constructed of 6×19 Galvanized EIPS Wire Rope.

The max factored load in a roof wind brace is $T_{\max }=2900 \mathrm{lbf}$.

The nominal strength of $\phi=0.400$ in wire rope is $T_{\text {allow }}=17220 \mathrm{lbf}$.

Safety Factor $:=\frac{\mathrm{T}_{\text {allow }} \cdot 90 \%}{\mathrm{~T}_{\max }}=5.34$

Rope Diameter (ln .)	Nominal Strength*, Tons (Bright \& Drawn Galvanized) EIPS		Approximate Wt.Ft. (Lbs.)	
	IWRE	Fiber Core	IWRE	Fiber Core
1/4	3.40	3.02	0.116	0.105
5/15	5.27	4.69	0.18	0.164
9/8	7.55	6.71	0.26	0236
7/13	102	9.09	0.35	0.32
1/2	133	11.8	0.46	0.42
9/35	168	14.9	0.59	0.53
58	20.6	18.3	0.72	0.66
3/4	29.4	26.2	1.04	0.95
7/8	398	35.4	1.42	1.29
1	517	46.0	1.85	1.68
1/4	65.0	57.9	2.34	2.13
$11 / 4$	79.9	71.0	2.39	2.63
178/3	960	85.4	3.50	3.18
$11 / 2$	1140	101.0	4.16	3.78

USE a 6×19 Galvanized EIPS wire rope with a minimum diameter of $\phi=0.4000 \mathrm{in}$.

Adjustment of the roof bracing cables is through turnbuckles.

The max factored load in a roof wind brace is $\mathrm{T}_{\max }=2900 \mathrm{lbf}$.
The working strength of $\phi=0.750$ in turnbuckle is $\mathrm{T}_{\text {work }}=5200 \mathrm{lbf}$.
The nominal strength of $\phi=0.750$ in turnbuckle is $\mathrm{T}_{\text {allow }}=26000 \mathrm{lbf}$.
Safety Factor $:=\frac{\mathrm{T}_{\text {allow }}}{\mathrm{T}_{\max }}=8.97$

USE a turnbuckle with a minimum thread diameter of $\phi=0.7500 \mathrm{in}$.

* Proof Load is 2.5 Times Work Load Limit.

Thread Diameter \& Take Up (Inches)	Work Load Limit (Lbs.)*	Unit Weight (Lbs.)
$\dagger 1 / 4 \times 4$	500	. 37
$\dagger 5 / 16 \times 4-1 / 2$	800	. 56
$\dagger 3 / 8 \times 6$	1200	. 85
$1 / 2 \times 6$	2200	1.82
$1 / 2 \times 9$	2200	2.29
$1 / 2 \times 12$	2200	2.71
$5 / 8 \times 6$	3500	3.21
$5 / 8 \times 9$	3500	3.95
$5 / 8 \times 12$	3500	4.58
$3 / 4 \times 6$	5200	4.80
$3 / 4 \times 9$	5200	5.85
$3 / 4 \times 12$	5200	6.72
$3 / 4 \times 18$	5200	8.45
$7 / 8 \times 12$	7200	9.37
$7 / 8 \times 18$	7200	
1×6	10000	110

HTS tentiQ GmbH
Hinter der Schlagmuhle 1 63699 Kefenrod Germany

This page intentionally left blank

APPENDIXA

FIGURES AND SKETCHES

This page intentionally left blank

A1-Appendix A-HTS Hoecker.xmcd	Approved for Construction
	$\begin{aligned} & \text { TSTR-20-01723 } \\ & 11 / 03 / 20 \end{aligned}$

APPENDIX B COMPUTER MODEL INPUT

This page intentionally left blank

 Dublin

OHIO, USA

APPENDIX C

COMPUTER MODEL OUTPUT

A3 - Appendix C-HTS Hoecker.xmcd	Approved for Construction
	$\begin{aligned} & \text { TSTR-20-01723 } \\ & 11 / 03 / 20 \end{aligned}$

This page intentionally left blank

A3-Appendix C-HTS Hoecker.xmcd	Approved for Construction
	$\begin{aligned} & \text { TSTR-20-01723 } \\ & 11 / 03 / 20 \end{aligned}$

> 1- Dead Load
W1/W5- Wind, $+X$ - - w with over-pressure W2/W6- Wind, $+X /-X$ with under-pressure
W3/W7- Wind, $+Z /-Z$ with over-pressure W4/W8- Wind, $+Z /$ /-Z with under-pressure S0- Balanced Snow Load

S1,S2,S3,S4,S5,S6,S7,S8- Unbalanced Snow Load | Node Reactions-Combined Loads |
| :--- |
| Node |

OHIO, USA
Approved for Construction TSTR-20-01723

A

$\sum_{\sum_{2}}=$

${ }_{x}$

HTS F173 13M

Approved for Construction TSTR-20-01723

Approved for Construction TSTR-20-01723

This page intentionally left blank

A3-Appendix C-HTS Hoecker.xmcd	Approved for Construction
	$\begin{aligned} & \text { TSTR-20-01723 } \\ & 11 / 03 / 20 \end{aligned}$

[^0]

WASHINGTON TOWNSHIP
FIRE DEPARTMENT
6200 Eiterman Road
Dublin, Ohio 43016
614-652-3920

Tent Application Process
For Dublin 2017 Ohio Fire Code based upon the 2015 International Fire Code Rules and Regulations for Tent Installation

Permits are required for a tent (capable of installing side curtains) in excess of 200 sq. ft. or a canopy (side curtain prohibited) in excess of 400 sq . ft. Construction shall comply with the current Ohio Building Code and applicable provisions of Chapter 24 in the Dublin Fire Code.
\square Place of assembly tents (50 or more persons) requires all of the following:
\checkmark exit and emergency lighting
\checkmark proper number of approved exits based on the occupant load
\checkmark no open or exposed flames inside or within 20 feet of tent
\square Free of straw, hay, shavings, or similar combustible materials
\square NO SMOKING shall be permitted in tents or under canopies. Approved "No" Smoking signs must be posted.
\square All tents and canopies shall be flame resistant treated and the proper certification along with proper labeling affixed on the material.
\square All tents and canopies must be properly anchored. (City of Dublin requires caps on all steel stakes installed on city property.
च Fire extinguishers are required in cooking and place of assembly tents. (Minimum 5lb rated 2A-10BC)

- Cooking and heating equipment shall not be located within 10 feet of the exits or combustible materials.
\square Flammable and combustible liquids must be stored outside in an approved manner not less than 50 feet away from structure.
■ LP-gas containers 500 gallons or less shall have a minimum separation between the container and structure not less than 10 feet and properly secured to prevent unauthorized movement.
■ LP-gas containers gallons or more shall have minimum separation between the container and structures of not less than 25 feet and properly secured to prevent unauthorized movement.
\square Generators and other internal combustion power sources shall be separated from tents/canopies by a minimum of 20 feet and shall be isolated from contact with the public by fencing, enclosure or other approved means.
\square Fees for tents and canopies are based on the number of tents or canopies installed \#1-5 $=\$ 50.00 \# 6-10=\$ 75.00 \quad \# 11-15=\$ 100.00 \# 16-20=\$ 160.00$ \#20+ = \$200.00
■ ALL TENTS SHALL BE INSPECTED by the Dublin Building Division and the Washington Township Fire Department before occupancy.

TRUSTEES

Denise Franz King
Charles W. Kranstuber
Jan Rozanski

FISCAL OFFICER
Joyce E. Robinson

City of Dublin Review Services－Commercial TENT Prescreen Checklist THIS IS NOT A REVIEW FOR CODE COMPLIANCE

Application \＃TSTR－20－01723	Submitted Date9／10 Project Name Tucci＇s Patio Tent Winter Project Contact \quad E－mail

Received by Review Services（Date）9／11			
$\begin{gathered} \text { YES } \\ \text { 回 } \end{gathered}$	NO	Application Complete？（Date）9／11 by：$\underline{\text { df }}$	
	口		
		If not complete please review items marked＂No＂below	
	No	GENERAL－Actions Required（Assume YES unless marked NO and initialed）	
	ㅁ	Application Temporary Structures Form Complete	Reviewer Initials
	ㅁ	Design Professional Seals on Drawings／Documents	Reviewer Initials
	ㅁ	No PRELIMINARY drawings included in submitted Drawings／Documents	Reviewer Initials
	\square	Itemized response to previous reviews provided	Reviewer Initials
	－	Drawings properly named and oriented．	Reviewer Initials
YES NA	NO	BUILDING／ELECTRICAL－Actions Required	Reviewer Initials BC
ㅁ	回	Building Code Summary（construction type，occupancy，and occupant load）provided	
回	\square	Tent Floor Plans provided Site Plan with distance from buildings to Tent Supports identified provided Brad 614／410－4613	
	回		
口 ロ	回	Flame Retardant Certificate for Tent Fabric noted to provided on Drawings／Documents	
ㅁ ロ	回	Egress Illumination with Emergency Power at 1 FC provided	
回	\square	Exits and exit access doors marked on the drawings provided（if required）	
口	\square	Minimum Structural Loading provided	
口 回	\square		
口 回	\square	Special Inspector＇s Credentials provided（Credentials required for any approval）	
口 回	\square	Toilet Fixtures complying with OBC 2902.1 and OBC Chapter 11 provided	
口 回	口	Delegated Design Listed and Phased Approval Request Form provided？	
口 回	\square	Generator located，sized and grounded shown on the plans	
Yes NA	No	FIRE－Actions Required	Reviewer Initials
口 田	－	Required Fire Protection Systems or Fire Watch Plan provided Fire Extinguishers located on the drawings．	
－	回		
YES NA	No	ZONING／PLANNING－Actions Required	Reviewer Initials
回	\square	Site Plan provided	
YES NA	No	ENGINEERING－Actions RequiredSite Plan provided	AS／
$\square \square$	－		

PRESCREEN NOTES

Show how the base plate will be anchored
\square
\square
\qquad

OHIO, USA

Washington Township Fire Department
(614) 652-3920

Notice of Plan Review

Notes: RECOMMENDED FIRE DISAPPROVAL OF THE TENT DRAWINGS.

WE have reviewed the Construction Documents for the referenced project, as submitted to the Division of Building Standards for matters of concern to the Washington Township Fire Department pertaining to fire protection and the 2017 Ohio Fire Code (OFC)

Inspector,
Hamilton, Chad

LISTING OF ITEMS OF NON-COMPLIANCE

This is not a Building Permit. It is a record of our review of documents submitted with your application for a Building Permit.

23 September 2020
Ms. Brenda Kinser
O'Neil Tents
895 W. Walnut Street
Canal Winchester, OH 43110
(614) 837-6352 bjk@oneiltents.com

Re:	Tucci's Patio Winter Tent
Address:	35 N. High Street (43017)
Application No.:	TSTR-20-01723

Dear Ms. Kinser:
The construction documents submitted 15 September 2020 have been reviewed for compliance with the provisions of the 2017 Ohio Building Code (August 2018 Edition). The review was based upon the following criteria:

Primary Use Group:	
Area/Occupant Load:	A-2 (Restaurant) 1,969 SF / Chairs @ Tables shown = 62 Seats* *Reference all current Governor of Ohio's "Responsible
	RestartOhio" regulations and guidance for social distancing requirements.
Construction Type:	
TBD	

LISTING OF ITEMS OF NON-COMPLIANCE- cont.
23 September 2020
Page 2 of 3
Tucci's Patio Winter Tent
Application No. TSTR-20-01723
The construction documents were prepared by O'Neil Tents and Robert V. Wangia, Ohio registered engineer \#E-73309 to comply with the requirements of the OBC Section 107.4.3 and have been reviewed, therefore, in accord with that Section.

OBC 107.4 Review of plans. When construction documents have been submitted to the building department for review and approval, the building official shall cause the construction documents to be examined for compliance with the rules of the board. . . .

The construction documents, which have been submitted for review, do not allow the City of Dublin to issue a full approval. The following item(s) have been found to not be in compliance with the rules of the board:

Item 1 OBC 3103.1.1 Conformance. Temporary structures and uses shall conform to the structural strength, fire safety, means of egress, accessibility, light, ventilation and sanitary requirements of this code as necessary to ensure public health, safety and general welfare.
Item 2 OBC 106.1.1 Information on construction documents. Construction documents shall be dimensioned and drawn upon suitable material. Electronic media documents are permitted to be submitted when approved by the building official. Construction documents shall be coordinated and of sufficient clarity to indicate the location, nature and extent of the work proposed and show in detail that it will conform to the provisions of this code. Construction drawings shall include information necessary to determine compliance with the building, mechanical, plumbing and fire protection codes such as:
a. Please show the tent location (in relation to existing building and property lines) and orientation on the site plan, including location of the vestibule tent and access to the exit discharge.
b. Floor plans must show all relevant information such as, but not limited to, door locations, door swings and all portions of the means of egress.
c. Please provide information for any proposed heating in this structure.

Item 3 OBC 602.1 General. Buildings and structures erected shall be classified in one of the five construction types defined in Section 602.2 through 602.5.
a. Please provide Flame Retardant Certificate for Tent Fabric or other documentation to demonstrate and confirm construction type classification.
Item 4 OBC 1010.1 Doors. Means of egress doors shall meet the requirements of this section. Doors serving a means of egress system shall meet the requirements of this section and Section 1022.2.
a. Please provide information for all egress doors including size, direction of swing, door operations, and hardware.
Item 5 OBC 906.1 Where required. Portable fire extinguishers shall be installed in all of the following locations: 1. In Group A occupancies....
a. Please show size, type and location of portable fire extinguishers.

Item 6 OBC 1604.8 Anchorage. Buildings and other structures, and portions thereof, shall be provided with anchorage in accordance with Section 1604.8.1 and 1604.8.3, as applicable.

a. The drawings indicate that (4) anchors are used in each base plate, but do not provide information for proposed anchors. Please show how the base plate will be anchored.
Item 7 The Washington Township Fire Department has requested an opportunity to provide input to the Dublin building department on issues relating to fire protection. The building official has evaluated the Department's comments related to the fire protection provisions of the OBC and incorporates those comments, by reference, into this Listing of Items of Noncompliance.
a. Please reply to and resolve the matters of the Fire Department's correspondence to this office.

Please advise the reviewer if the owner will cause the information to be provided to the department for review or dispute the items of noncompliance we have identified. If the owner's intention is to dispute an item of non-compliance, please provide the basis for the dispute for the building official's review. The building official shall evaluate your response, the plans examiner's report and any reports received from the fire official as described in Section 106.1.2.5 and render a final determination as to whether the items of noncompliance are to be communicated to the owner in the form of an adjudication order complying with Section 109. The building official shall also determine whether any further approvals are possible, and issue the appropriate approval as described in Section 105.
Please provide a written, point by point response, identifying the action or position taken to each of the items and sub-items in the listing.

Reviewed and Signed,

J.E. Ruranawiky

Janet E. Rusanowsky, Architect
Commercial Plans Examiner
(614) 4104612 jrusanowsky@dublin.oh.us

Owner or Owner's Representative Date

Print Name and Title as Signed

TSTR-20-01723

FOOTING OBSERVATION REPORT

PROJECT: Tucci's Outdoor Canopy 25 N High St - Dublin, OH
CLIENT: Lehman Daman Construction

DATE: 11/04/20 JOB NO.: 20-F-24684

WEATHER: Sunny, 60's to 70's

OBSERVATIONS:

Footing soils were evaluated visually for foundation support. Soil bearing at footing elevation was verified using applicable testing methods and procedures. The following test data and observations were determined.

1) FOOTING LOCATION:
2) PERMIT NUMBER:

35 N High Street - Perimeter canopy augured pier footings at lines 1-4/A-D
(If Applicable)
3) FOOTING ELEVATION
(DESIGN / UNDERCUT):
4) FOOTING BEARING ON
(FILL / NATURAL):
5) VISUAL SOIL CONDITIONS:

N/A
Design
Natural
6) AVERAGE SOIL BEARING (P.S.F.):

Limestone bedrock
7) REQUIRED SOIL BEARING (P.S.F.):

5,000+
8) CONCRETE TEST CYLINDERS CAST? 3,000 (YES / NO):
9) COMMENTS:

Observations indicated firm and stable soil conditions at footing grade. Observations indicated footing subgrade soil bearing values exceed required bearing values. Footings were excavated to approved project plan dimensions and reinforcing steel was installed per on site approved project plans (Page S1, dated 09/25/20, and submitted by Schaefer Architects).

OHIO, USA
Commercial Temporary Structure (Tents) includes WTFD Permit

JOB INFORMATION

Date: 11/03/2020

Record ID/ Permit No.: TSTR-20-01723

Address: 35 N HIGH St, DUBLIN, OH 43017
Type: Commercial Temporary Structure (Tents) includes WTFD
Job Name: Tucci's Patio Tent - Winter
Description: Installing a 43x43 clear span tent over the patio. Tent will be enclosed for winter seating for the resat
Contractor:
Water Tap Size:

APPLICANT RESPONSIBILITY

I hereby agree that I will take full responsibility as required by law for compliance with all state and local codes and ordinances pertaining to construction and the conditions of this permit. All construction debris must be removed by the contractor. I also agree to notify the building department when work is ready for inspection and comply with section 108 of the Ohio Building Code for non-residential construction or the Residential Code of Ohio for Residential Construction.

PERMIT ISSUED BY

Issued By:

City of Dublin Building Standards, 5200 Emerald Parkway - Annex, Dublin, Ohio 43017

November 20, 2020

```
Mr. Seth Burner
Lehman Daman Construction
975 Eastwind Drive, Suite 130
Westerville, Ohio 43081
Reference: Special Inspections Summary
    Tucci's Outdoor Camopy
    35 North High Street - Dublin, Ohio
    GCl Project No.: 20-F-24684
```

Dear Mr. Burner:
Geotechnical Consultants, Inc. (GCI) observed construction operations and performed materials testing from the period of November 4, 2020 to November 10, 2020 for the above referenced project. Services are on-going and a separate summary will be submitted at completion.

The foundations we observed were constructed on limestone bedrock. Our field reports noted that foundation subgrade bearing met or exceeded the required soil bearing pressure of $3,000 \mathrm{psf}$. Our observations further indicate that foundation steel reinforcement and dimensions were in accordance with the approved building plans and specifications. Compressive strength tests taken during foundation concrete placement met or exceeded design strength. Drilled anchor bolt placement (Hilti) was performed per the approved plans and the manufacturer's instructions.

We also observed placement of non-shrink grout under column bases to be satisfactory.
Specific information regarding our daily site visits can be obtained from our Daily Site Observation Reports for the project.

In summary, based on our site observations, it is our opinion that the referenced items were constructed in accordance with the approved project plans and specifications. We trust this letter provides you with the necessary information. If you have any questions or need additional information, please call.

Respectfully submitted, Geotechnical Consultants, Inc.

Robert L. Miles, III Vice President

Washington Township Fire Department
6200 Eiterman Road
Dublin, Ohio 43016
(614) 652-3920

Notice of Plan Review

```
Tucci's Restuarant
                                    Occupancy ID:0000000184
35 N High ST
Dublin, OH 43017
Project: TUCCI'S PATIO WINTER TENT, REV.
Application #: TSTR-20-01723(1)
Use: A-2
Construction: N/A
Area: 1,949 SF
Occupancy: 62 PER SEATING CHART
Notes: RECOMMENDED FIRE APPROVAL OF THE REVISED DRAWINGS.
\begin{tabular}{l}
\hline Reported Date \(\quad\) Code/Description \\
\hline \(10 / 26 / 2020 \quad 130 \quad\) Building \\
6801.01 No Violations Noted \\
Notes: \\
No Violations Noted. \\
REVISION 1 REVIEWED - COMPLIANT \\
WE have reviewed the Construction Documents for the referenced project, \\
as submitted to the Division of Building Standards for matters of concern \\
to the Washington Township Fire Department pertaining to fire protection \\
and the 2017 Ohio Fire Code (OFC) \\
Inspector, \\
Hamilton, Chad
\end{tabular}
```

CERTIFICATE OF PLAN APPROVAL

This is not a Building Permit. It is a record of our review of documents submitted with your application for a Building Permit.

26 October 2020

Ms. Brenda Kinser

O'Neil Tents
895 W. Walnut Street
Canal Winchester, OH 43110
(614) 837-6352 bjk@oneiltents.com

Re:	Tucci's Patio Winter Tent
Address:	35 N. High Street (43017)
Application No.:	TSTR-20-01723(1)

Dear Ms. Kinser:
The construction documents dated 25 September 2020 have been reviewed for compliance with the provisions of the 2017 Ohio Building Code (August 2018 Edition). The review was based upon the following criteria:

Primary Use Group: A-2
Area/Occupant Load: 1,849 SF / Chairs @ Tables shown = 62 Seats*
*Reference all current Governor of Ohio's "Responsible RestartOhio" regulations and guidance for social distancing requirements

Construction Type: IIB

Special Stipulations: 1. Set up 1 November 2020; Take down by 29 April 2020 (<180 days) or until the end of the Executive Order, whichever is first. 2. This approval is for the $43^{\prime} \times 43^{\prime}$ main tent only. 3. No cooking allowed.

Project Description: Temporary structure to create additional eating area for Tucci's restaurant as allowed by City of Dublin "Executive Order for Portable Structures and Temporary Uses" related to COVID-19 State of Emergency (March 17, 2020). Tent consists of a clear span $43^{\prime}-0^{\prime \prime} \times 43^{\prime}-0^{\prime \prime}$ enclosed, heated structure anchored to new concrete piers with two illuminated exit signs/egress lights w battery back-up and 2 fire extinguishers.
Previous Occ Cert: TSTR-20-00999 (summer tent): 12-200470 (building)

The construction documents were prepared by Robert V. Nangia, Ohio registered engineer \#E-73309 and Jeffery R. Bolchalk, Ohio registered engineer \#E-70796 to comply with
requirements of the OBC Section 107.4.3 and have been reviewed, therefore, in accord with that Section.

OBC 107.5.1 Approval of construction documents. . . . When the construction documents have been determined to conform to the applicable provisions of the rules of the Board, the building official shall endorse or stamp such plans as approved and issue the certificate of plan approval in accordance with section 105.5.

Item 1 THE CONSTRUCTION DOCUMENTS ARE APPROVED

Item 2 The qualification of Geotechnical Consultants, Inc. as the Special Inspection company for all foundation and structural work has been reviewed and accepted by the building official.
1704.2.4 Report requirement. Special inspectors shall keep records of inspections. The special inspectors shall submit reports of special inspections and tests to the building official and to the registered design professional in responsible charge. Reports shall indicate that work inspected or tested was or was not completed in conformance to approved construction documents. Discrepancies shall be brought to the immediate attention of the contractor for correction. If they are not corrected, the discrepancies shall be brought to the attention of the building official and to the registered design professional in responsible charge prior to the completion of that phase of the work. A final report documenting required special inspections and tests, and correction of any discrepancies noted in the inspections or tests, shall be submitted at a point in time agreed upon prior to the start of work by the owner or the owner's representative to the building official prior to the issuance of a certificate of occupancy.

This APPROVAL is for the issuance of a general building permit only. Separate permits and fees for plumbing, mechanical, sprinkler, electric and low-voltage must be obtained from the Dublin Building Standards Division prior to the start of any work in these generally subcontracted areas.

The following items are required for code compliance, but are not necessarily covered in detail in the construction documents. This list is a reminder to the design professional and contractors of issues, which are to be satisfactorily dealt with in the field:

Item A Review and Approval of Plumbing Drawings and inspection of Plumbing installations are performed by the Franklin County Board of Health
Item B OBC 106.3 Amended construction documents. If substantive changes to the building are contemplated after first document submission, or during construction, those changes must be submitted to the building official for review and approval prior to those changes being executed. The building official may waive this requirement in the instance of an emergency repair, or similar instance.

CERTIFICATE OF PLAN APPROVAL - cont.

Item C OBC 107.5.2 Posting. The certificate of plan approval shall be posted in a conspicuous location on the site. The owner and the contractor shall preserve and keep the certificate posted until the final inspections are complete.
Item D OBC 107.7 Approved construction document sets. One set of construction documents shall be kept by the building official. The other set(s) shall be returned to the applicant, kept at the work site along with manufacturers' installation instructions and product information, and shall be available for use by the inspector.
Item E OBC 108.1 General. . . . Construction or work for which an approval is required shall be subject to inspection by the building official. It shall be the duty of the owner or the owner's duly authorized representative to notify the building department when work is ready for inspection. Access to and means for inspection of such work shall be provided for any inspections that are required by this code.
It shall be the duty of the owner or the owner's authorized representative to cause the work to remain accessible and exposed for inspection purposes . . . until the work has been inspected to verify compliance with the approved construction documents. . .
This includes firestopping and draftstopping, mechanical work; piping, ducts and systems, structural members and connections, and electrical work (Chapter 27 OBC). All systems and elements covered by code are to be inspected and approved before being covered.
Subsequent work is allowed to proceed only to the point of the next required inspection.
Item F OBC 804.3 Testing and Identification Interior floor finish and floor covering materials shall be tested by an approved agency in accordance with NFPA 253 and identified by a hang tag or other suitable method so as to identify the manufacturer or supplier and style, and shall indicate the interior floor finish or floor covering classification according to Section 804.2. Carpet-type floor coverings shall be tested as proposed for use, including underlayment. Test reports confirming the information provided in the manufacturer's product identification shall be furnished to the building official upon request.
Item G OBC 1101.2 Design. Buildings and facilities shall be designed and constructed to be accessible in accordance with this code and ICC 117.1 as amended in Section 1112 of this chapter.
Item H All electrical will comply with the requirements of Article 27 OBC and the National Electrical Code, NFPA 70, OBC approved.

Reviewed and Signed,
J.E. Rusanawsky

Janet E. Rusanowsky, Architect
Commercial Plans Examiner
(614) 4104612 jrusanowsky@dublin.oh.us

Brad fagrell
 Brad Fagrell, P.E. 0

Director of Building Standards/CBO

CERTIFICATE OF PLAN APPROVAL - cont.
26 October 2020
Page 4 of 4

Tucci's Patio Winter Tent Application No. TSTR-20-01723(1)

Owner or Owner's Representative
Date

Print Name and Title as Signed

CHECKLIST OF REQUIRED INSPECTIONS

OHIO, USA

INSPECTION NOT REQUIRED INSPECTION TO BE REQUIRED INSPECTION REQUIRED THIS PHASE

FULL APPROVAL

TYPE OF INSPECTION

Building Inspections

FOOTINGS
FOUNDATION STEEL
FOUNDATION
BUILDING PIERS
BUILDING WATERPROOFING
MASONRY WALL GROUTING
DIAMONDS (BOX OUTS)
PRE SLAB
FIRE-RATED ASSEMBLY
SHEAR WALLS
STRUCTURE / FRAME
RATED WALL FASTENERS
FIREPLACE
EXTERIOR WALL INSULATION
SHAFT WALL
FIRESTOP ASSEMBLY
STRUCTURAL ABOVE CEILING
WITNESS
OCCUPANCY
Electrical Inspections

ELECTRIC TEMP SERVICE
ELECTRIC UNDERGROUND
ELECTRIC BONDING (UFER)
ELECTRIC ROUGH
ELECTRIC ABOVE CEILING
ELECTRIC SERVICE
ELECTRIC FINAL

Miscellaneous Inspections

TENT
DEMOLITION

Date: 26-Oct-20
Reviewer: jer
App Type Code: TSTR
Application No: TSTR-20-01723(1)
Project Name: Tucci's Patio Wiinter Tent

Project Address: $\mathbf{3 5} \mathbf{N}$. High Street

TYPE OF INSPECTION

HVAC Inspections

HVAC ABOVE CEILING
HVAC ROUGH
HVAC FINAL
HOOD SUPPRESSION

Gas Piping Inspections

GAS PIPING UNDERGROUND
GAS PIPING ROUGH
GAS PIPING FINAL
GAS FIREPLACE

Franklin County Plumbing

PLUMBING UNDERGROUND
PLUMBING ROUGH
PLUMBING FINAL
Washington Twp Fire Inspections

FIRE PREVENTION
FIRE ALARM ROUGH
FIRE ALARM FINAL
SPRINKLER ROUGH
SPRINKLER ABOVE CEILING
SPRINKLER FINAL
FIRE LINE UNDERGROUND
Additional Permits Required
ELECTRIC
PLUMBING
HVAC
GAS PIPING
LOW VOLTAGE
FIRE PROTECTION

Certificate Type

CERTIFICATE OF OCCUPANCY
CERTIFICATE OF COMPLETION
43×43 CLEAR SPAN TENT
WALL ON ALL SIDES
TENT WILL HAVE TWO
ILLLIMINATED EXIT W/EGRESS
FIRE EXTGUISHERS 5 lb ($3-\mathrm{A} 40 \mathrm{~B}-\mathrm{C}$)
NO SMOKING SIGNS
all occupants have ACCESS TO RESTROOMS IN THE BUILDING
$\square=$ BASE PLATE AT EVERY UPRIGHT
USES FOUR ANCHORS

4X4 CANOPY WITH WALL
THIS TENT JUST COVERS THE
AREA FROM THE TENTTO THE AREA FROM THE TENT TO THE
AWNING AND CONAINS A SINGLE DOOR THAT AWNING AND CONTAINS SINGLE DOOR
SWINGS INWARD PER CITY SUGGESTION FRON ON SITTE MEETING
THIS TENTTO BE SECUR THIS TENT TO BE SECURED AT THE CORNERS

4'X2O WALKWAY TENT
THAT WLL HAVE SIDE WALLSAND IT WILL CONNECT THE
AWNNGG COVERED AREA AND RUN DOWNA THE RAMP WITH ADOOR SWINGING OUT ON THE END THE TENT WILL BE SECURED WITH ANCHORS THE TENT WILL BE SECUREO
INSTALED IN THE CONCRETE.

Re: Tucci tent Inbox x
o <victor.manzano@hts-tentiq.com

Brenda
Door specs below

Phone +15614506974
tructural note
SoVERNNG CODE
Es BC 20158 AsCE-7 10
design loads
N Structure foundation foundation desicn IS based on foundation Reaction
\qquad

\qquad stef st
onstruction and Safety

3. COOTRPACTOR SAALL RRCCE ENTRE STRUCTURE A R REQURED TO MANTAN STABLLTT UNTL
 foundations

 O PSFFFT BELOW NATURAL GRADE AGANST P PERS,
2. Contractor shal contact ututy companes for locatn undergroun services and

CAST-1N.PLACE CONCRETE 03 O3.30.00
Concrete materals:
R Footmes: fc = 3000 ps

remforging bars shall be fre of dirt and form release agents.

POST INSTALLED ANCHORS

3. TESTING ANI INSEECTION: REFER TO EVALUATION REPORTS FOR ADDTIONAL TESTING AND
 CCRIERA PRIOR TO INSTALLATIN
. AdHESVE ANCHORS

 IN CRACKED CONCRERE
c. Verrfy that the shlelf life of the adhesve has not been exceeded on the date of

Special Inspections

Unser Zeichen	Durchwahl	Gössendorf,
KOP	1532	29.09 .2020

NFPA 701

We hereby confirm that the National Fire Prevention Association No. 701 Small Scale (Test 1) and Large Scale (Test 2) compliance documents are still valid:

- Flammability Test Report, Lab Identification no. 8543
- Flammability Test Report, Lab Identification no. 10316

Kind Regards

Tha kongrafor

i.A. DI Petra Königshofer

Product Manager

REGISTERED FLAME RESISTANT PRODUCT

Product:
787 POLYPLAN TENT OPAQUE

Product Marketed By:
SATTLER AG
SATTLERSTRASSE 45, 8077 GOSSENDORF AUSTRIA

Registration No.
F-06001

This product meets the minimum requirements of flame resistance established by the California State Fire Marshal for products identified in Section 13115, California Health and Safety Code.

The scope of the approved use of this product is provided in the current edition of the CALIFORNIA APPROVED LIST OF FLAME RETARDANT CHEMICALS AND FABRICS, GENERAL AND LIMITED APPLICATIONS CONCERNS published by the California State Fire Marshal.

Expire: 6/30/2021

December 19, 2013
Mr. Joe Santaloci
OUTDURA CORP.
447 Main Street
Hudson, NC 28638
Reference: Flammability Test Report Lab Identification No. 8543 Invoice No. 39305 (Attached)

Dear Mr. Santaloci:
One (1) fabric sample, identified as 787 POLYPLAN TENT OPAQUE, was received and tested in accordance with the National Fire Prevention Association No. 701, "Standard Methods of Fire Tests for Flame Propagation of Textiles and Films, 2010 Edition, (Test 1, Small Scale)". The results are as follows:

Specimen Number
Residual Flame (seconds)

1	0.0	4.41
2	0.0	3.80
3	0.0	3.81
4	0.0	2.33
5	0.0	3.97
6	0.0	2.96
7	0.0	3.96
8	0.0	3.95
9	0.0	4.18
10	$\underline{0.0}$	$\underline{3.15}$
AVG.	$\mathbf{0 . 0}$	3.76

The fabric sample submitted meets the minimum requirements of the above standard. The average percent weight loss cannot exceed 40% and the weight loss of individual specimens cannot exceed mean value plus three standard deviations. The average residual flame cannot exceed 2.0 seconds.

If there are any questions or when we can be of further assistance, please let us knọw.

Sincerely,

Bobby E. Puett

BEP/mr

Attachment

[^0]: * Must come before Frame Inspection

